

Offline speciation framework for mobile emissions in MOVES3

<u>Claudia Toro¹, Evan Murray¹, Darrell Sonntag², Benjamin N. Murphy³, Karl Seltzer⁴, Alison Eyth⁴, Christine Allen⁵</u>

¹Office of Transportation and Air Quality, US EPA, Ann Arbor, MI | ²Department of Civil and Construction Engineering, Brigham Young University ³Office of Research and Development, US EPA, Research Triangle Park, NC | ⁴Office of Air Quality Planning and Standards, US EPA, Research Triangle Park, NC | ⁵General Dynamics Information Technology, Durham, NC

Contact: toro.claudia@epa.gov

BACKGROUND

Speciation is the process of apportioning organic gas aggregates and particulate matter (PM_{2.5}) emission estimates into specific chemical species for air quality modeling. The apportionment is done using source-specific speciation profiles hosted in EPA's SPECIATE database¹.

MOVES² provides emissions estimates of TOG and PM_{2.5} for both onroad and nonroad sectors:

ONROAD SPECIATION For some TOG and PM species, MOVES applies

EXAMPLE

Speciation of evaporative emissions from passenger cars for an example county on a July weekday in 2022 using CB6AE7 via internal speciation (i.e., selecting CB6AE7 as an output pollutant in MOVES3.0.3) and new offline methodology in MOVES3.0.4:

platform).

XYLMN

3.34%

PRPA

0.25%

UNR 0.00%

4.10%

adjustments based on temperature and fuels, that vary by vehicle technology. We refer to these as "integrated species". Subtracting integrated species from TOG provides NONHAPTOG (see Glossary). Subtracting integrated species from total PM_{2.5} provides TOM and Residual PM.

Emissions speciation of onroad NONHAPTOG, TOM and Residual PM has been done in MOVES through selection of chemical mechanisms as a pollutant output.

NONROAD SPECIATION

MOVES does not perform adjustments but provides direct emissions for the same VOCs listed as integrated species and a variety of air toxics including PAHs, dioxins, furans and metals. Nonroad PM_{2.5} is only provided as total PM_{2.5}.

Emissions speciation of nonroad NONHAPTOG and PM_{2.5} has always been done as a post-process.

MOTIVATION

ALK2 Offline 1.20%

• The same MOVES run output can be used to speciate NONHAPTOG emissions using a different mechanism (e.g., SAPCR07T)

IOLE

0.98%

IVOC

0.01%

0.00%

OLE 0.30%

- To allow for timely updates of new chemical mechanisms or speciation profiles with less dependency on MOVES release timing, benefiting the air quality modeling community (e.g., ROC speciation³).
- To facilitate the calculation of chemical mechanisms and reduce model runtime significantly for users that require this output.

	PM & TOG Integrated Species										
	Methane (CH ₄)	-	Hexane								
	Benzene	•	Propionaldehyde								
	Ethanol	•	Styrene								
	1,3-Butadiene	•	Toluene								
	Formaldehyde	•	Xylene								
	Acetaldehyde		Naphthalene gas								
	Acrolein		Elemental Carbon								
	2,2,4-Trimethylpentane		Sulfate								
•	Ethyl Benzene										
	Glossary										

MOVES: MOtor Vehicle Emission Simulator

SMOKE county profileCo

EXH_CROC 1089 0.973171

TOM EXH_CROC 1089 0.026829 3.33706

EXH CROC 1089

EXH CROC 1089

weighted

CROCOM

Ratio

0.867

2.51642

0.867

tribution

0.98915

0.01085

Profile Contribution parameter represents the fractional contribution of each speciation profile to emissions from a given SCC; it sums up to 1 for each SCC and month.

HIGHLIGHTS

- MOVES3 (v3.0.4 and after) no longer provides output speciated into model species (chemical mechanisms).
- Users that need to speciate onroad and/or nonroad gaseous or PM emissions should use a post-processing script included in the Tools menu of the MOVES3 GUI.
- The post-processing provides weights representing the fraction of emissions that should be assigned to a specific SPECIATE profile for a given SCC. These profile weights are used downstream in SMOKE.
- Moving the speciation process outside of MOVES allows using SMOKE capabilities to handle

TOG: Total Organic Gases

NONHAPTOG: Residual TOG (or non-Hazardous Air Pollutant TOG)
 TOM: Total Organic Particulate Matter (OM + NCOM)
 Residual PM (or NonECNonSO4nonOM): Total PM_{2.5}-EC-SO₄-OC-NCOM
 NCOM: Non-carbon Organic Matter

OC: Organic Carbon

PAH: Polycyclic Aromatic Hydrocarbons

SCC: Source Classification Code

References

1. EPA's SPECIATE database: <u>https://www.epa.gov/air-emissions-modeling/speciate</u>

- 2. MOVES, <u>https://www.epa.gov/moves</u>
- 3. Murphy et al. (2022), Quantifying the Impact of Mobile-Source Reactive Organic Carbon Emissions on U.S. Air Quality, CMAS Conference Poster

4. Speciation onroad, <u>https://www.epa.gov/moves/moves-onroad-technical-reports</u>
5. Speciation nonroad, <u>https://www.epa.gov/moves/nonroad-technical-reports</u>
6. CMAQ fact sheets, <u>https://www.epa.gov/cmaq/cmaq-fact-sheets</u>

Mapping of sources to speciation profiles is stored in the default database in ancillary tables only used by the post-processing tool

pmSpeciation pollutant pollutant

123

123

123

123

TOM

TOM

TOM

ProfileID

8995

8996

8995

8996

Example rows from rocspeciation table for onroad mapping:

month

SMOKE_SCC

2202310192

2202310192

2202310272

2202310272

4. Ancillary information

typeID	regClass ID	process ID	minModel YearlD	maxModel YearID	pmSpeciation ProfileID	CROCCode	CROCOM Ratio	togSpeciation ProfileID	GROCCode	GROCNN Ratio
10	20	1	1960	2000	8993	101CROC	1.369	8751a	102GROC	1
10	20	15	1960	2000	8993	101CROC	1.369	8751a	102GROC	1
11	20	1	1960	2000	8993	101CROC	1.369	8751a	102GROC	1
11	20	15	1960	2000	8993	101CROC	1.369	8751a	102GROC	1
12	20	1	1960	2000	8993	101CROC	1.369	8751a	102GROC	1

Parameters shaded in green are used to calculate condensable/gaseous reactive organic carbon emissions for users interested

in applying chemical mechanisms that

account for them (e.g., CRACMM⁶).

See application in poster by Murphy et al.³

speciation profiles defined under different

mechanisms without performing new MOVES

runs.

Providing an external tool facilitates the incorporation of new data and science related to speciation profiles or chemical mechanisms for onroad and nonroad sources as it becomes available (e.g., ROC speciation³).

Disclaimer:

The views expressed in this poster are those of the author[s] and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.