

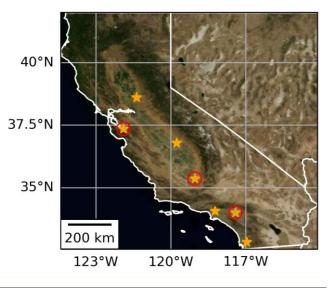
Generalized Additive Modeling to Characterize PM_{2.5} Behavior in California

¹Department of Civil & Environmental Engineering, University of California, Berkeley; ²School of Civil & Environmental Engineering, Georgia Institute of Technology

Objective

declining Despite emissions much of California remains in nonattainment of PM_{2.5} NAAQS. why, we То understand $PM_{2.5}$ historical characterize behavior by:

- Identifying driving variables of speciated PM_{2.5} in California
- Modeling the response of speciated PM_{2.5} to those driving variables



Methods

The general form for a generalized additive model (GAM) is

$$g(\mu) = \beta_0 + \sum_i f_i(x_i) + \varepsilon_i \tag{1}$$

Where g is the link function, μ is the expected value of the target variable, β_0 is the model intercept, f_i are the smooth functions to fit to the covariates x_i , and ε_i is the model error. For our model specification, we choose the log link and our covariates are detailed in Table 1.

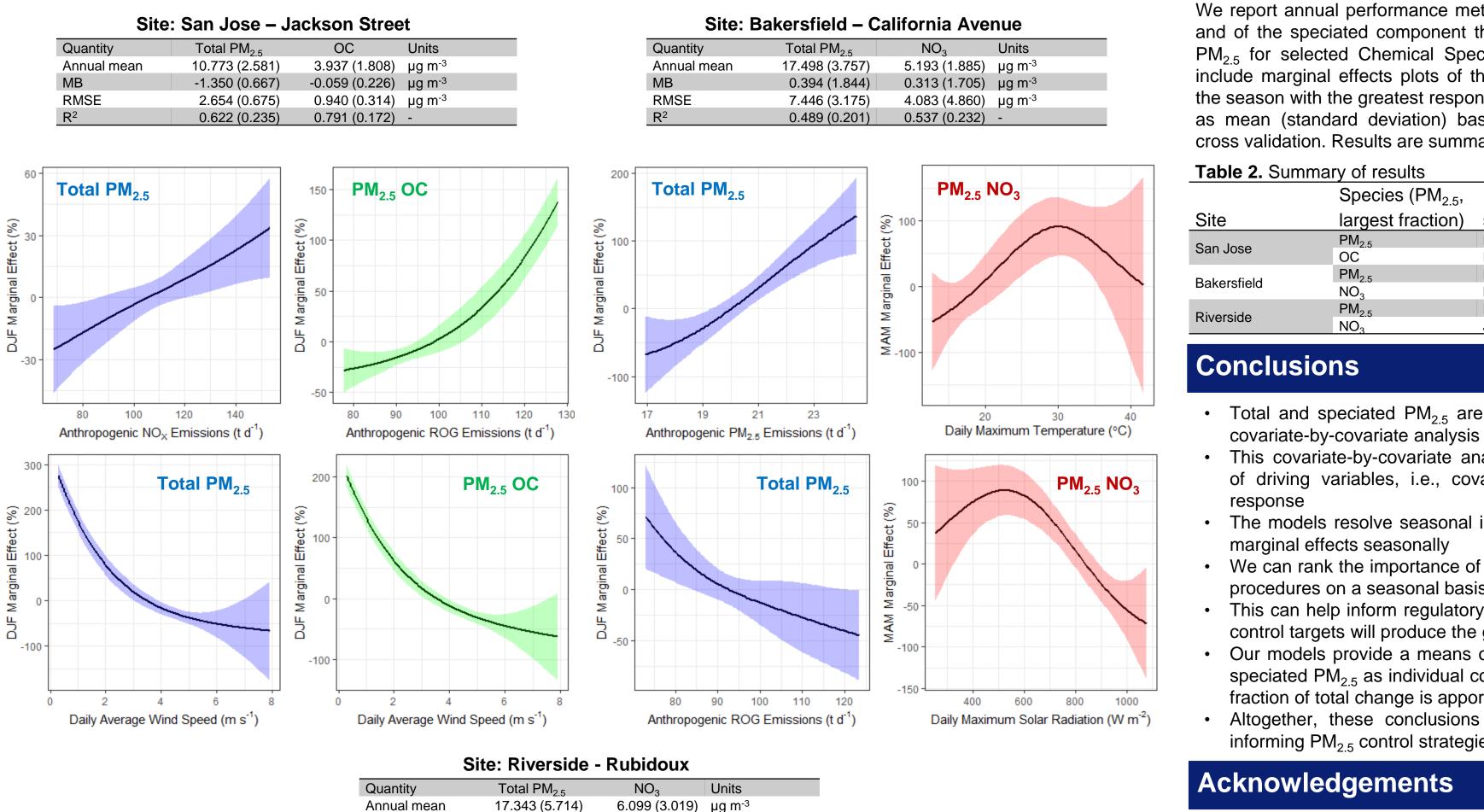
Table 1. Summary of terms in (2).				
Covariate	Fit	Description	Units	
ТМАХ	Penalized cubic regression spline	Daily maximum temperature	°C	
AWND	Penalized cubic regression spline	Daily average wind speed	m s ⁻¹	
RH _{sfc}	Penalized cubic regression spline	Daily maximum surface relative humidity	%	
SR	Penalized cubic regression spline	Daily maximum solar radiation	W m ⁻²	
U _{850mb}	Penalized cubic regression spline	Daily average 850 mb U component of wind (east-west)	m s ⁻¹	
V _{850mb}	Penalized cubic regression spline	Daily average 850 mb V component of wind (north-south)	m s ⁻¹	
RH _{850mb}	Penalized cubic regression spline	Daily average 850 mb relative humidity	%	
eNO _X	Penalized cubic regression spline	Anthropogenic NO _X emissions	tons day ⁻¹	
eROG	Penalized cubic regression spline	Anthropogenic ROG emissions	tons day-1	
eSO _X	Penalized cubic regression spline	Anthropogenic SO _X emissions	tons day ⁻¹	
eNH ₃	Penalized cubic regression spline	Anthropogenic NH ₃ emissions	tons day-1	
ePM _{2.5}	Penalized cubic regression spline	Anthropogenic PM _{2.5} emissions	tons day ⁻¹	
ONI	Penalized cubic regression spline	Oceanic Niño Index	°C	
Season	Factor variable	Season	N/A	

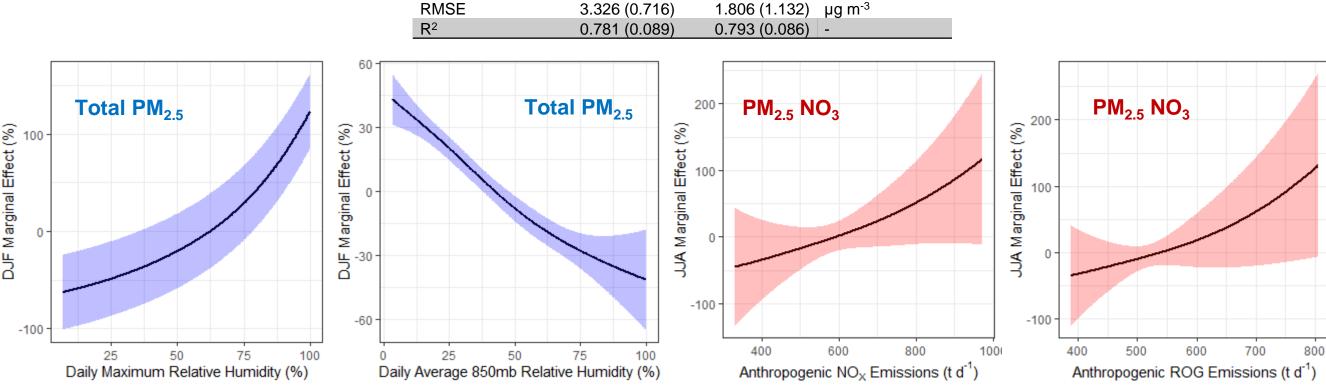
All models are fit with the same set of covariates. Spline fitting employs penalization for automated model selection. Marginal effects are calculated as

$$ME_i = 100\% \times [\exp\{s(x_i)\} - 1]$$

Results

Site: San Jose – Jackson S			
Quantity	Total PM _{2.5}	OC	
Annual mean	10.773 (2.581)	3.937 (1.	
MB	-1.350 (0.667)	-0.059 (0.	
RMSE	2.654 (0.675)	0.940 (0.	
R ²	0.622 (0.235)	0.791 (0.	





MB

Duncan Quevedo¹, Ziqi Gao², & Cesunica Ivey¹

• Khanh Do and Charles Blanchard for their insight and technical support The California Air Resources Board The statements and conclusions on this poster are those of the contractor and not necessarily those of the California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products.

References

- https://doi.org/10.1016/j.atmosenv.2007.04.061
- 100033. https://doi.org/10.1016/j.aeaoa.2019.100033.
- https://doi.org/10.1016/j.envpol.2022.119503.
- Atmospheric Environment 2011, 45 (6), 1328–1336. https://doi.org/10.1016/j.atmosenv.2010.11.051.

Total PM _{2.5}	200 PM2 5 N	0,
0.781 (0.089)) 0.793 (0.086)	-
3.326 (0.716	· · · · ·	µg m ⁻³
0.027 (0.758)) 0.048 (0.523)	µg m⁻³
17.343 (5.714)) 6.099 (3.019)	µg m⁻³
Total PM _{2.5}	NO ₃	Units

We report annual performance metrics for our models of total PM_{2.5} and of the speciated component that is the largest fraction of total PM_{2.5} for selected Chemical Speciation Network (CSN) sites. We include marginal effects plots of the two most important drivers for the season with the greatest response. Performance metrics reported as mean (standard deviation) based on 5-times repeated 10-fold cross validation. Results are summarized in Table 2.

sul	ts
-----	----

Species (PM _{2.5} ,	Dominant	
largest fraction)	season	Top 2 drivers
PM _{2.5}	DJF	eNO _X , AWND
OC	DJF	eROG, AWND
PM _{2.5}	DJF	ePM _{2.5} , eROG
NO ₃	MAM	TMAX, SR
PM _{2.5}	DJF	RH, RH _{850mb}
NO ₃	JJA	eNO _x , eROG

• Total and speciated PM_{25} are modeled in a way that enables

• This covariate-by-covariate analysis facilitates the identification of driving variables, i.e., covariates that dominate the PM_{25}

• The models resolve seasonal interactions, allowing us to model

• We can rank the importance of drivers using variable importance procedures on a seasonal basis

• This can help inform regulatory policy design by identifying what control targets will produce the greatest reductions in PM_{25}

Our models provide a means of predicting changes in total and speciated PM_{2.5} as individual covariates change, identifying what fraction of total change is apportionable to which covariate

Altogether, these conclusions highlight our models' utility for informing PM_{2.5} control strategies

1) Camalier, L.; Cox, W.; Dolwick, P. The Effects of Meteorology on Ozone in Urban Areas and Their Use in Assessing Ozone Trends. Atmospheric Environment 2007, 41 (33), 7127–7137.

2) Blanchard, C. L.; Shaw, S. L.; Edgerton, E. S.; Schwab, J. J. Emission Influences on Air Pollutant Concentrations in New York State: I. Ozone. Atmospheric Environment: X 2019. 3.

3) Gao, Z.; Ivey, C. E.; Blanchard, C. L.; Do, K.; Lee, S.-M.; Russell, A. G. Separating Emissions and Meteorological Impacts on Peak Ozone Concentrations in Southern California Using Generalized Additive Modeling. Environmental Pollution 2022, 307, 119503.

4) Pearce, J. L.; Beringer, J.; Nicholls, N.; Hyndman, R. J.; Tapper, N. J. Quantifying the Influence of Local Meteorology on Air Quality Using Generalized Additive Models.