Understanding the contributions of different types of biomass combustion to ambient PM_{2.5} in the U.S. using CMAQv5.3.3

Jiaoyan (Joey) Huang, PhD, Shih-Ying Chang, PhD, ShihMing Huang, and Fred Lurmann Sonoma Technology, Petaluma, CA, USA

Sonoma Technology

Contact Us 707.665.9900 sonomatech.com Poster presented by Joey Huang jhuang@sonomatech.com

SCAN ME

This smoke modeling work is part of an NIH-funded study titled "Wildfires and intentional biomass burning in California and Preterm Birth" led by Amy Padula at the University of California, San Francisco

Background

The increasing frequency and intensity of large California wildfire events in recent years have caused major concern regarding public health impacts from wildfire smoke

Wildfire Acres Burned in California

s 5	5.0	Source: California department of forestry and fire					
9 4 4	.5	protection					
Willig 3	.5						
3.	.0						

2018 PM_{2.5} Biomass Source Apportionment in CONUS and California by Month

exposure. A recent study estimated that ozone (O_3) and fine particulate matter (PM_{2.5}) impacts from wildfire emission exposure caused between 9,900 and 25,000 premature deaths in 2016 in the United States (Fann et al., 2018).

an G.G., Johnston F.H., Pouliot G., and Rappold A.G. (2018) *Science of The Total Environment*, 610-611

Models

Model configuration:

- Modeling period: 2018
- Photochemical model: Community Multiscale Air Quality Modeling (CMAQ) v5.3.3
- Meteorology-Chemistry Interface Processor (MCIP), emission, boundary, and initial conditions: 2018 U.S. EPA data

- Biomass emissions:

- Wildfire emissions (WF): Estimated based on merged satellite (MODIS) and agency (GeoMAC, ICS-209, FIRESTAT, CAL FIRE) fire activity data using the USFS BlueSky Smoke Modeling Framework
- Prescribed fire emissions (Rx): Estimated based on satellite (MODIS) and merged agency (CAL FIRE, USFS FACTS, CARB PFIRS) fire activity data using BlueSky
- Agricultural fire emissions (AG): 2018 U.S. EPA data
- Residential wood combustion (RWC): 2018 Nation Emission Inventory (NEI) data
- AG, Rx, and WF emissions data were modeled as point sources and the actual emissions were calculated in-line with the CMAQ plume rise option

2018 PM_{2.5} Chemical Component Related to Biomass Emissions in California by Month

- CMAQ was run without implementing potential secondary organic aerosol form combustion emissions (PcSOA) for these biomass emission sectors
- Base scenario model performance: the normalized mean bias ranges from 30% to 35% for hourly total PM_{25} concentrations and from 0% to 15% for hourly ozone concentrations.

Description Scenario Base case With all emissions Without ag fire emissions Sens case 1 Sens case 2 Without wildfire emissions Sens case 3 Without prescribed fire emissions Sens case 4 Without RWC

Model Scenarios

Spatial Variation: Wildfire (WF) and Prescribed Fire (Rx) Contributable $PM_{2.5}$ (µg/m³) in 2018

120°W	105°W	90°W	75°W	60°W	120°W

Comparison of U.S. EPA and Sonoma Technology (STI) Monthly Wildfire Acres Burned in California

Conclusions

• WF is the most important biomass emission source of PM₂₅ from July through September in California, with monthly average contributions

Future Work

 Investigate the differences between wildfire contributable PM_{2.5} using the EPA inventory and Sonoma Technology's inventory. This will help us

ranging from 50% to 75%.

- The second largest biomass contributor of PM₂₅ is Rx emissions, with monthly contribution ranging from >5% to 25% from October to April.
- WF, Rx, and RWC have similar impacts on PM₂₅ chemical component with high other secondary organic matter. However, for AG emissions, the most import species are SO_4 , NO_3 , NH_4 aerosols and primary organic matter.

understand the impacts on accuracy of the CMAQ simulation from accuracy of emissions. Explore biomass combustion-related chemistry in

JAN FEB MAR APR APR APR APR APR APR APR DUL JUL JUL SEP OCT OCT DEC

CMAQ. Currently, primary organic and secondary organic aerosol formations near emission sources in CMAQ are not well predicted.

To analyze ambient PM_{2.5} from wildfires and to prescribe fires from an environmental justice perspective.

NH4 SO4 NO3

ORGA

ORGB

Others

POM

OtherSOM