Sensitivity of Particulate Matter Concentrations to Revised Estimates of Onroad Ammonia Emissions

Darrell Sonntag¹, Jesse Bash², Claudia Toro³, Guy Burke⁴, Ben Murphy², Karl Seltzer⁵, Heather Simon⁵, Sarah Benish⁶, Kristen Foley², Alison Eyth⁵, Chris Allen⁷, Janice Godfrey⁵, Mark Shephard⁸, Karen E. Cady-Periera⁹

¹ Office of Transportation & Air Quality (OTAQ), Environmental Protection Agency

² Office of Research and Development (ORD), Environmental Protection Agency

³ Former ORISE Fellow, Hosted by OTAQ, now at Eastern Research Group

⁴ Former EPA Intern at OTAQ, now at EPA Region 2

⁵ Office of Air Quality Planning & Standards (OAQPS), Environmental Protection Agency

⁶ Oak Ridge Institute for Science and Education (ORISE) Fellow, Hosted by ORD

⁷ General Dynamics Information Technology

⁸ Environment and Climate Change Canada

⁹ AER Inc.

Community Modeling and Analysis System (CMAS) Annual Conference

November 1-5, 2021

The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Background

- Nationwide, ammonia (NH₃) emissions dominated by agriculture and fires
- $\circ~$ In urban areas, onroad vehicles are significant source of $\rm NH_3\,emissions$
 - Light-duty gasoline vehicles: Catalytic reduction of NO to form NH₃ in three-way catalytic converter under fuel rich conditions
 - Heavy-duty diesel vehicles: Overdosing of urea in selective catalytic reduction (SCR) systems used to control NOx leads to "ammonia slip"
- EPA's Motor Vehicle Emission Simulator (MOVES)
 - Estimates onroad and nonroad vehicle emissions for EPA's emissions modeling platform
 - Onroad NH₃ emissions based on studies conducted in 2001 and earlier on limited number of vehicles

Motivation

- Research suggests mobile-source NH₃ inventories in urban areas are underestimated by MOVES and the EPA emissions modeling platform
 - \circ Sun et al. (2017) On-road measurements of NH₃/CO₂ suggest that mobile-source NH₃ is more than 2 X higher than reported in the 2011 NEI
 - Moravek et al. (2019) and Emery et al. (2020) found better air quality model agreement to ammonia and ammonium-nitrate in Salt Lake City when mobile NH₃ increased by 2 X
- Arter et al. (2021) estimated that mobile-source ammonia emissions contribute to significant health burden
 - Estimated that NH₃ emissions have larger health impacts than NOx emissions from onroad vehicles in the northeastern United States

Objectives

- Compare NH₃ emission rates in MOVES to recent remote sensing and road-side studies
- Estimate sensitivity of air quality to changes in onroad NH₃ emissions

Light-Duty Remote Sensing Data (RSD)

- o RSD collected by University of Denver (see Bishop et al. 2015)
 - Over 335,000 light-duty gasoline vehicle-specific NH₃ observations made in campaigns conducted from 2005 to 2020 available at <u>http://www.feat.biochem.du.edu/</u>
 - Seven locations throughout the United States (four in California)
 - Each measurement includes vehicle model, model year/age, vehicle speed, and acceleration
- Fleet average measurements from University of Denver compare well to tunnel and onroad fleet NH₃/CO₂ ratios (Sun et al. 2017)

State, City, Year CA FRES 2008 CA LANG 2008 CA_LANG_2013 CA LANG 2015 CA_SAJO_2008 CA_VANU_2010 CO DENV 2005 CO DENV 2013 CO DENV 2015 CO DENV 2017 CO DENV 2020 IL CHIC 2014 IL CHIC 2016 IL CHIC 2018 OK TULS 2005 OK_TULS_2013 OK TULS 2015 OK TULS 2017 OK_TULS_2019

Photo from Bishop et al. 2015 (Used with permission)

Model Year (MY) specific emission rates

- Significant model year effect observed in RSD emission rates
- Developed average rates for MY ranges where observed values are stable
- Derived MY-specific rates for periods of rapid change
- o After MY 2018, rates projected to remain the same
- Estimated separately for light-duty vehicles (LDV) and light-duty trucks (LDT)

- Age Effects
 - Significant age effect observed in lightduty remote sensing data
 - Estimated emission rates by model year and age group
 - For missing vehicle class, model year, and age combinations (e.g., age 2+ for MY 2018) applied the same age effects from earlier model years

- We assigned MOVES3 rates to each RSD observation based on
 - Vehicle class (LDV or LDT)
 - Model year (MY)
 - Vehicle age groups (e.g. 0-3, 4-5, 6-7)
 - Operating conditions (speed, acceleration)
- In the same way, we assigned the sensitivity rates newly developed to each RSD observation
- Finally, we averaged by MY to create the plot shown here
- RSD fuel-based emission rates are significantly higher than MOVES3 across all model years
- LHD Sensitivity emission rates capture the magnitude and trend of the RSD data
 - Small differences between RSD and Sensitivity rates are due to averaging across model year and vehicle age groups

- Time-based emission rates (g/hour) = fuelbased (gNH₃/kg-fuel) rates from RSD x fuel consumption rates in MOVES (kg-fuel/hour)
 - Use MOVES fuel consumption rates by model year, vehicle class and running operating modes
 - Applied in MOVES run to estimate distancebased rate (g/mile) for individual calendar year and representative operating modes
- Similar trend observed in distance-based and fuel-based emission rates
 - Largest differences between sensitivity case and MOVES occurs for vehicles from ages 5 to 20 (Model years 1997-2012)

MOVES run CY 2017 — Sensitivity — MOVES3

Heavy-duty (HD) Vehicle NH₃ Emission Data

Caldecott Tunnel outside Oakland, California (Preble, et al. 2019a)

- Over 900 diesel truck NH₃ measurements identified by model year
- Observed large increase in NH₃ emissions with trucks equipped with selective catalytic reduction (SCR) aftertreatment systems (MY 2010+)
- Measurements of pre-2010 MY heavy-duty diesel vehicles are low and uncertain
 - Comparable to previous measurements made in the Caldecott Tunnel in 2006

Peralta Weigh Station near Anaheim, California (Haugen et al. 2018)

- 1,844 diesel truck measurements
- Large increase in NH₃ in the 2017 campaign compared to previous campaigns, due to presence of MY 2010+ trucks

Caldecott Tunnel, Preble et al. 2019a

Peralta Weight Station, Haugen et al. 2018

Model Year*	Caldecott Tunnel (g/kg) ¹	Peralta Weigh Station (g/kg) ²
2010-2018	0.18 <u>+</u> 0.07; N = 547	0.14
2007-2009	0.00 <u>+</u> 0.01; N = 181	~0
2004-2006 (no DPF)	0.00 <u>+</u> 0.01; N =24	~0
1960-2003	0.02 <u>+</u> 0.02; N = 62	~0
2018 HDD fleet average	0.1; N = 1167	0.09; N = 1844

*With the 2010 NOx standards, HD diesel engines often lagged the chassis model year by 1 yr

¹ Engine model year

² Chassis model year

Heavy-duty diesel NH₃ Rates for Sensitivity Analysis

- Converted fuel-based rates from Caldecott Tunnel study (Preble et al. 2018) to time-based rates
 - o Used model year groups from the Caldecott study
 - Used MOVES heavy-duty fuel consumption rates to convert to time-based emission rates
 - o No aging effect applied
 - Applied in MOVES run to estimate distance-based rate (g/mile)
- o Sensitivity rates based on Caldecott tunnel
 - $\circ~$ Lower than MOVES3 for pre-MY 2010 rates
 - Significantly larger than MOVES3 for MY 2010+
 - Variation in MY 2010+ due to improved fuel economy, and sales of non-SCR equipped diesel trucks
 - MY 2010-MY 2018 NH₃ rates applied to MY 2019 and later heavy-duty diesel vehicles

MOVES run CY 2017 — Sensitivity — MOVES3

Onroad national emissions inventory impact

Replaced the MOVES3 emission rates with the sensitivity rates and ran MOVES for the entire U.S

All other inputs left as MOVES3 defaults

AQ Model Run Methods/Description

5-

Base-Case: Annual 2017 Conterminous US simulation from the EPA's Air **QUA**lity **TimE S**eries (EQUATES) project

- <u>www.epa.gov/EQUATES</u>
- WRFv4.1.1 and CMAQv5.3.2
- 12 km horizontal resolution
- Chemistry: Carbon Bond 6, Aero7
- Deposition: Surface Tiled Aerosol-Gas Exchange (STAGE) Module with Bidirectional Ammonia (NH₃ BiDi) transfer.
- Emissions: 2017 NEI primary base year.
 - Onroad and nonroad inventories based on MOVES3 except for CA (EMFAC2017) and TX (TexN2 model)

2017 Mobile NH₃ Sensitivity Case:

- Scaled onroad diesel NH₃ emissions by factor of **1.54**
- Scaled onroad non-diesel NH₃ emissions by factor **2.08**
- All other input data and parameters are held constant.

2017 Mobile NH₃ Compared to **Cr**oss-trac Infrared **S**ounder (CrIS) Observations

- 2017 Annual CMAQ and CrIS observations were matched in space and time plotted above
- Spatial patterns are similar
 - CMAQ overestimates concentrations in agricultural areas (typically several ppb) and underestimated concentrations elsewhere (typically less than 1 ppm)
 - CrIS overpass at 13:00 local time misses the mobile NH₃ emission peaks during morning and evening commutes

National NH₃ Impacts (2017 Annual Mean)

- Modeled NH₃ concentrations compared to the Ambient Ammonia Monitoring Network (AMoN)
- Use of sensitivity-case onroad NH₃ emission factors reduce model bias at AMoN sites
 - Annual bias and error are reduced, by up to 1 μg m⁻³, at 96.8% and 93.7% of AMoN sites, respectively
- Cool colors and grey indicate reductions in biases and warm colors indicate increases in biases
- The size of the circle corresponds to the magnitude of the change in bias

Mid-Atlantic Case Study

- CMAQ with Integrated Source Apportionment Method (ISAM) was run for 2016 for a Mid-Atlantic Subdomain
 - EQUATES inputs used
 - Multiple EGU, Mobile, Marine, and Agriculture sectors were considered
- Mobile NH₃ was a substantial fraction of the ambient NH₃ (up to 50% in January and 35% in July) along the I-95 Corridor
- NH₃ emission factors based on RSD and tunnel measurements increase this contribution from approximately 5% to 10% of the total ambient concentration
 - Reduced model bias and error by 10% and 4% in January and July respectively

Impacts on Ambient Air Quality

- **PM_{2.5} Enhancement:** Difference between sensitivity simulation and base-case.
 - Increases were dominated by NH₄NO₃ during cooler months.
 - Largest enhancements were in NYCregion, followed by mid-Atlantic/upper Midwest and other urban cores.
 - Population-weighted state-wide increases in NJ/CT/NY region during cooler months: 0.3 – 0.4 μg m⁻³. Increases < 0.1 μg m⁻³ during warm months.

Mobile $PM_{2.5}$ Enhancement [μ g m⁻³]

0.02

0.01

0.00

AQ Sensitivity Conclusions

- Sensitivity-case NH₃ emission factors for onroad gasoline and diesel sectors roughly doubled overall mobile NH₃ emissions in CY2017
 - Note: Differences between MOVES3 and sensitivity-case mobile emissions vary across calendar years and fuel types
- \circ Increases predicted urban NH₃ ambient concentrations by up to 2.3 ppbv in winter and 3.0 ppbv in summer. For winter, this could be up to 50% increase in urban NH₃.

 \circ Resulting PM_{2.5} enhancements in Winter are up to 0.5 µg m⁻³.

References

- Arter, C. A., et al. (2021). Mortality-based damages per ton due to the on-road mobile sector in the Northeastern and Mid-Atlantic U.S. by region, vehicle class and precursor. Environmental Research Letters, 16 (6), 065008. DOI: 10.1088/1748-9326/abf60b.
- Bishop, G. A. and D. H. Stedman (2015). Reactive Nitrogen Species Emission Trends in Three Light-/Medium-Duty United States Fleets. *Environ Sci Technol*, 49 (18), 11234-11240. DOI: 10.1021/acs.est.5b02392.
- Bishop, G. (2020). On-Road Remote Sensing of Automobile Emissions in the Denver Area: Winter 2020. CRC Project No. E-123 Denver 2019. https://crcao.org/published-reports-full/.
- Emery, C., et al. (2020). Investigating Sources of Ammonia Uncertainty in Modeling the Salt Lake City PM2.5 Nonattainment Area. Prepared for Utah Division of Air Quality. Prepared by Ramboll US Corporation. May 2020.
- Haugen, M. J., et al. (2018). Evaluation of Heavy- and Medium-Duty On-Road Vehicle Emissions in California's South Coast Air Basin. Environ Sci Technol, 52 (22), 13298-13305. DOI: 10.1021/acs.est.8b03994.
- Kean, A. J., et al. (2009). Trends in on-road vehicle emissions of ammonia. *Atmospheric Environment*, 43 (8), 1565-1570. DOI: 10.1016/j.atmosenv.2008.09.085.
- Moravek, A., et al. (2019). Wintertime spatial distribution of ammonia and its emission sources in the Great Salt Lake region. Atmos. Chem. Phys., 19 (24), 15691-15709. DOI: 10.5194/acp-19-15691-2019.
- Preble, C. V., et al. (2019a). Control Technology-Driven Changes to In-Use Heavy-Duty Diesel Truck Emissions of Nitrogenous Species and Related Environmental Impacts. Environ Sci Technol, 53 (24), 14568-14576. DOI: 10.1021/acs.est.9b04763.
- Preble, C. V., et al. (2019b). *Measuring Real-World Emissions from the On-road Heavy-Duty Truck Fleet*. CARB Contract No. 12-315. March 15, 2019. <u>https://ww2.arb.ca.gov/sites/default/files/classic/research/apr/past/12-315.pdf</u>.
- Sun, K., et al. (2017). Vehicle Emissions as an Important Urban Ammonia Source in the United States and China. *Environ Sci Technol*, 51 (4), 2472-2481. DOI: 10.1021/acs.est.6b02805.