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From COVID-19 to future electrification: Assessing
traffic impacts on air quality by a machine-learning model  #st

The large fluctuations in traffic during the COVID-19 pandemic provide an unparalleled
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Observed Pattern in LA Traffic and Pollution During the COVID-19
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Air Quality in China during COVID-19 2020-CLD: 23 January to 13 February 2020
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Unexpected air pollution with marked emission
reductions during the COVID-19 outbreak in China
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Air pollution epidemic

The lockdown enforced in most cities in China in response to the outbreak of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in the virtual absence of motor
vehicle traffic and sharply reduced manufacturing activity for several weeks. Le et al. report
some of the anticipated and unanticipated effects that this had on air pollution there, including
unexpectedly high levels of particulate matter abundances and severe haze formation in some
areas. This natural experiment will help in the assessment of air pollution mitigation
strategies.

Science, this issue p. 702

Abstract

The absence of motor vehicle traffic and suspended manufacturing during the coronavirus
disease 2019 (COVID-19) pandemic in China enabled assessment of the efficiency of air
pollution mitigation. Up to 90% reduction of certain emissions during the city-lockdown period
can be identified from satellite and ground-based observations. Unexpectedly, extreme
particulate matter levels simultaneously occurred in northern China. Our synergistic
observation analyses and model simulations show that anomalously high humidity promoted
aerosol heterogeneous chemistry, along with stagnant airflow and uninterrupted emissions
from nower plants and petrochemical facilities. contributina to severe haze formation. Also.

the COVID-19 outbreak in China. Science 369, 702—706 (2020).
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Methodology
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Random Forest model to predict air pollutants

* Predictors: PM, <, NO, and O; concentrations at air quality monitoring sites.
* Period: 1/1 - 12/31 in 2019 and 1/1 - 7/1 1n 2020

* Indicators:

* Temporal parameters: year (2019, 2020), day of the week (1-7), holiday;

* Population density in buffers (persons/km?);

 Site-specific meteorological parameters: wind speed (m/s), wind direction (deg), temperature
(°C), boundary height (m), precipitation (m), solar radiation, pressure, relative humidity (%);

* Traffic activity: non-truck flow, non-truck VMT, truck flow, truck VMT 1n buffers.

 Shortest distance to the nearby POIs (CNG/LNG Fueling Stations, Landfills, NG Compressor
Stations, NG Processing Plants NG Storage Fields, O1l Gas Wells, Petroleum Refineries, Power
Plants, Wastewater Treatment Plants, Airports, Ports)

* Configuration of Buffers: circles with radi1 of 50m, 100m, 200m, 300m, 400m,
500m, 1000m, 2000m, 3000m, 4000m, 5000m.



Machine Learning Prediction of Key Pollution Factors
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Simulated Traffic Impact on LA Air Pollution During COVID-19
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Future Traffic and Climate Impact on LA Air Quality
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Thank you!

Contact
yjn@caltech.edu



