

CMAS Conference 2021

Performance Comparison of Electrochemical Sensors across Six Cities of Continental United States

Presented by

Md Hasibul Hasan¹, Haofei Yu¹, Yi Li², Ziyang Yuan²

¹Civil, Environmental and Construction Engineering, University of Central Florida ²Sailbri Cooper Inc

Background

- NO₂ is pre-cursor for O₃. NO₂ exposure reduce lung functions, increase airways inflammation & asthma. O₃ exposure results in more severe lung diseases like asthma, emphysema, and chronic bronchitis.
- For higher spatial density measurement of NO_2 and O_3 , low cost electrochemical sensor is necessary.
- NO_2 and O_3 sensor calibration involves relating raw voltage data with target concentration (FRM/FEM).

Sailbri Cooper Inc.TM

Location of Six Monitoring Sites

Location of Six Monitoring Sites

Site	Latitude(N)	Longitude(W)	Elevation(m)	
Atlanta,GA	33.69	84.29	308	
Riverside, CA	33.99	117.49	220	
Sacramento,CA	38.57	121.49	30	
New York, NY	40.74	73.82	25	
Portland, OR 45.5		122.6	69	
Phoenix, AZ	33.51	112.1	354	

Research Questions

- 1. Performance comparison of low-cost NO_2 and O_3 sensors across the six cities
- 2. Are NO_2 and O_3 sensor performances affected by any other gaseous pollutants, and meteorological factors?
- 3. Are the machine learning calibration methods better than linear and polynomial regression?

Calibration Methods

Local Calibration Comparison

Ranges and Mean values of Temperature, RH, NO₂ and O₃ concentration(ppbv) across six cities

City	Start time	End time	Days	Temperature	RH	NO ₂	O ₃
ATL (Atlanta, GA)	6/28/2019	8/9/2019	42	28.3 (17-40.5)	72 (31.7-97.4)	7.4 (1-38)	28.5 (1-77)
NYC (New York City, NY)	1/28/2020	4/22/2020	85	7.5 (-9-23.9)	62.5 (22.2-101)	13.9 (1.1-53.7)	28.8 (1-58)
PHX (Phoenix, AZ)	12/11/2019	4/14/2020	125	15.7 (0-34.3)	52.3 (16.9-98.3)	15.5 (2-50)	20.6 (1-56)
PTL (Portland, OR)	1/4/2019	10/31/2019	301	14.7 (-4-40.2)	68.9 (17-103)	7.5 (1-42)	23.2 (1-77)
RAV (Riverside, CA)	8/2/2019	8/22/2019	20	26.9 (16.1-44.2)	54.8 (15.3-90.1)	10.2 (2-31)	42.1 (2-126)
SAC (Sacramento, CA)	9/27/2019	11/8/2019	43	17.6 (3-34.2)	48.1 (12-94.8)	17.1 (1-62)	23 (-2-66)

Local Calibration Comparison

Sensor Performance (R²) at corresponding cities

		PTL	ATL	RAV	SAC	NYC	PHX
NO ₂ Polynomial	Linear	0.73	0.34	0.26	0.83	0.84	0.51
	Polynomial	0.83	0.37	0.20	0.88	0.88	0.62
	RF	0.84	0.65	0.48	0.93	0.9	0.74
O ₃	Linear	0.63	0.81	0.97	0.59	0.23	0.58
	Polynomial	0.65	0.79	0.95	0.55	0.18	0.53
	RF	0.59	0.86	0.97	0.82	0.39	0.70

CO gas influences Sensor Performance?

Sensor Performance (R²) at corresponding cities after incorporation of CO signal

		PTL	ATL	RAV	SAC	NYC	PHX
NO2 I	Linear	0.80(+0.07)	0.45(+0.11)	0.59(+0.33)	0.89(+0.06)	0.86(+0.02)	0.76(+0.25)
	Polynomial	0.84(+0.01)	0.45(+0.08)	0.48(+0.28)	0.89(+0.01)	0.85(-0.03)	0.72(+0.1)
	RF	0.86(+0.02)	0.74(+0.09)	0.68(+0.2)	0.97(+0.04)	0.92(+0.02)	0.90(+0.16)
О3	Linear	0.78(+0.15)	0.83(+0.02)	0.97(+0)	0.80(+0.21)	0.70(+0.47)	0.79(+0.21)
	Polynomial	0.77(+0.12)	0.77(-0.02)	0.95(+0)	0.76(+0.21)	0.60(+0.42)	0.73(+0.2)
	RF	0.69(+0.10)	0.89(+0.03)	0.97(+0)	0.94(+0.12)	0.81(+0.42)	0.91(+0.21)

- Electrochemical sensor performance is increased when we include raw CO signal due to the possible co-variation between CO and target gas.
- Correlation coefficient increases the most in those cities where R² were considerably lower before the inclusion of CO signal.

CO gas influences Sensor Performance?

 R^2 between CO and NO_2 and O_3 measured by FRM/FEM, and by low-cost sensors

			ATL		SAC ^a		PHX
CO & NO2	Between FRM/FEM	0.45 ^b	0.45	0.79	NI/A	0.72	0.65
	Between low-cost sensor	0.22	0.37	0.26		0.57	0.41
CO & O ₃	Between FRM/FEM	0.27 ^c	0.07	0.11	NI/A	0.56	0.56
	Between low-cost sensor	0.22	0.01	0.04	IN/A	0.29	0.27

Machine Learning Algorithms Perform Better?

NO₂ Performance

Machine Learning Algorithms Perform Better?

O₃ Performance

Seasonal Variation of Sensor Performance Exists?

Both winter and non-winter data available at 4 cities

NO₂ Performance

O₃ Performance

Findings

- 1. Local calibration models perform better in Portland, Sacramento and New York city for NO₂ and Atlanta and Riverside for O₃.
- 2. Incorporation of CO signal increases model performance of NO₂ and O₃
- 3. Random Forest method performs better than linear or polynomial regression.
- 4. Better winter performance of sensors observed

