

EQUATES

EPA's Air QUAlity TimE Series Project

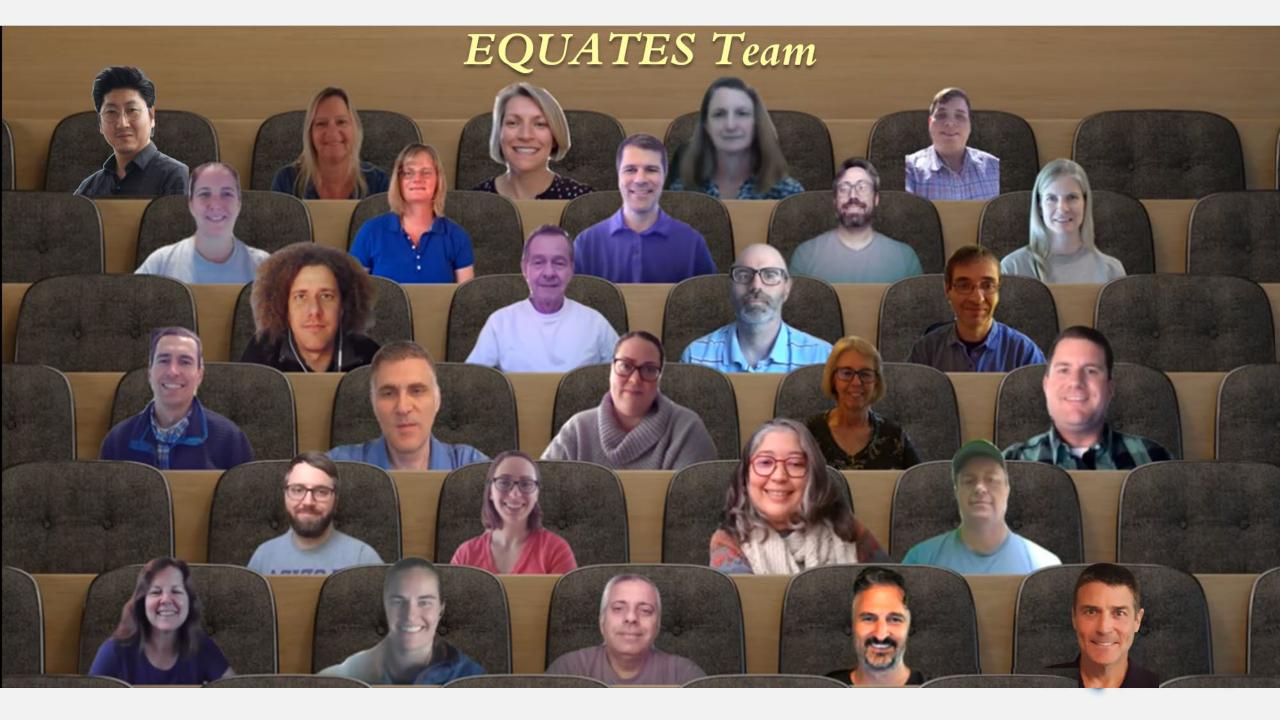
2002-2017 meteorology, emissions, and air quality modeling for the Northern Hemisphere and the Conterminous United States

Presented by Kristen Foley on behalf of the EQUATES Team

> US EPA Office of Research and Development Center for Environmental Measurement & Modeling

20th Annual CMAS Conference November 2, 2021

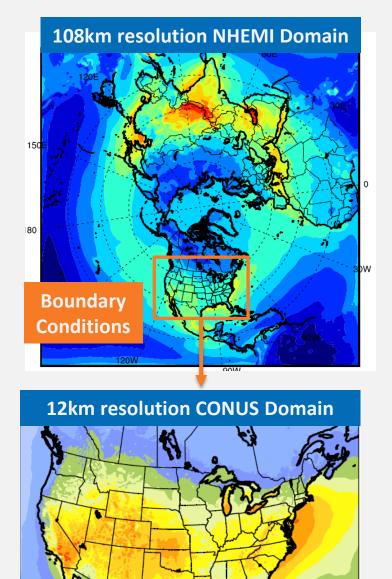
EQUATES Team


- Overall coordination: Kristen Foley, George Pouliot, Alison Eyth, Norm Possiel
- Meteorology modeling: Rob Gilliam, Wyat Appel, Jesse Bash, Brian Eder, Chris Misenis, Lara Reynolds
- Emissions modeling: Michael Aldridge, Chris Allen, Jesse Bash, Megan Beardsley, James Beidler, David Choi, Caroline Farkas, Janice Godfrey, Barron Henderson, Shannon Koplitz, Rich Mason, Rohit Mathur, Havala Pye, Matthew Roark, Sarah Roberts, Karl Seltzer, Darrell Sonntag, Kevin Talgo, Claudia Toro, Jeff Vukovich

Additional emissions modeling support from ERG

- CMAQ modeling: Wyat Appel, Christian Hogrefe
- Evaluation, analysis, and data sharing: Liz Adams, Wyat Appel, Sarav Arunachalam, Jesse Bash, Sarah Benish, Barron Henderson, Christian Hogrefe, Shannon Koplitz, Rohit Mathur, Havala Pye, Donna Schwede, Karl Seltzer, Heather Simon

ORD | OAQPS | OTAQ | GDIT | CMAS Center



Overview of EQUATES Modeling Effort

EQUATES provides a unified set of modeling data across applications

- Temporal coverage: 2002-2017 (eventually 2018-2019)
- Spatial domains: Northern Hemisphere and contiguous US
- Meteorology inputs: New meteorological modeling for both domains using state-of-the-science retrospective simulations
- Emissions inputs: New inventories were developed using EPA's 2017 NEI as the base year with consistent methods used for each sector to avoid artificial step changes
- CMAQ version 5.3.2

Motivation for EQUATES Project

 Decadal and multidecadal CMAQ simulations have been used for a wide variety of health and ecosystem applications

- Each set of simulations used a slightly different approach for modeling across years
 - "DOE" (Xing et al., 2013; Gan et al., 2015): 1990-2010 CMAQv5.0.2 simulations at 36km resolution
 - "ECODEP" (Zhang et al., 2019): 2002 -2012 CMAQv5.0.2 simulations at 12km resolution
 - <u>EPA's Fused Air Quality Surfaces</u>: 2002-2017 model/observed 'fused' ozone and PM_{2.5} surfaces using the best available modeling data and a Bayesian statistical downscaling model

Multiyear CMAQ Simulations

	CMAQv5.0.2 "DOE" Xing et al. (2013) Gan et al. (2015)	CMAQv5.0.2 "ECODEP" Zhang et al. (2019)	FAQSD Berrocal et al. (2012)	CMAQv5.3.2 "EQUATES"
Model	CMAQv5.0.2 (CB05_AERO6; without bidirectional NH_3)	CMAQv5.0.2 (CB05TUCL-AERO6; with bidirectional NH ₃)	Various CMAQ versions (v4.6-5.3)	CMAQv5.3.2 (CB6R3-AERO7; with bidi NH ₃)
Date range	1990 - 2010	2002 – 2012	2002-2017	2002 – 2017 (+2018-2019)
Domain/ Resolution	108km NHEMI + 36km CONUS	12km CONUS	12km CONUS	108km NHEMI + 12km CONUS
Meteorology	WRF3.4	WRF3.4	Various WRF versions	WRFv4.1.1
Emissions	NEI data (2002 or 2005 base year + scaling factors and emissions constraints; MOBILE6 mobile sources; climatological fires, no CMV)	Various NEIs / Modeling Platforms (2002-2011: MOVES2010b and 2012: MOVES2014a); year specific fires, CMV included	Various NEIs / Modeling Platforms	2017 NEI as primary base year; consistent methods used for each sector (when feasible) to avoid artificial step changes
Boundary Conditions	N Hemi CMAQv5.0.2	GEOS-Chem	Depends on the modeling year	N Hemi CMAQv5.3.2

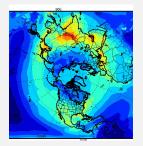
Evaluation of New EQUATES Modeling

• Meteorology - See poster presentation by Rob Gilliam

• Emissions – comparison of EQUATES mobile, oil and gas, and fire emissions to previous emissions modeling platforms

 Hemispheric CMAQ - See presentation by Christian Hogrefe in this session and poster presentation by Rebecca Miller

- CMAQ over the US
 - Initial evaluation of ozone, $PM_{2.5}$ and NO_X
 - Deposition: See presentation by Sarah Benish in this session


For the topics covered in this talk, I will focus on success stories and remaining challenges

Meteorology - See poster presentation by Rob Gilliam

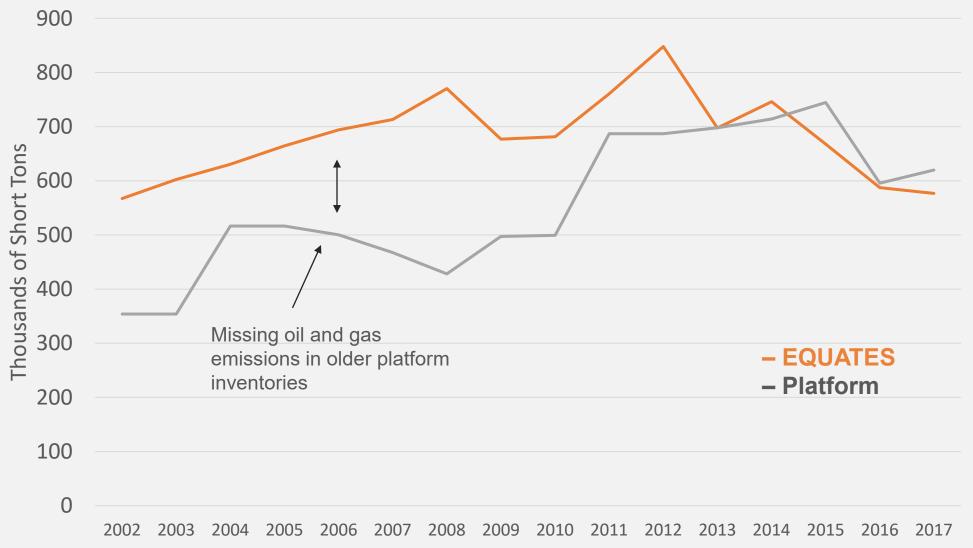
• **Emissions** – comparison of EQUATES mobile, oil and gas, and fire emissions to previous emissions modeling platforms

 Hemispheric CMAQ - See presentation by Christian Hogrefe in this session and poster presentation by Rebecca Miller

- CMAQ over the US
 - Initial evaluation of ozone, $PM_{2.5}$ and NO_X
 - Deposition: See presentation by Sarah Benish in this session

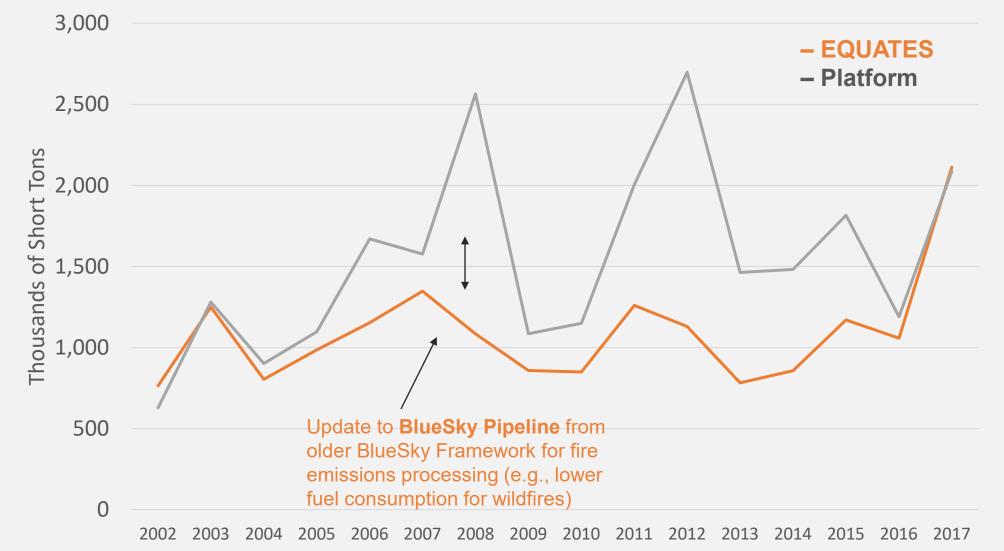
Emissions Comparison

- The following slides highlight changes in EQUATES emissions in several important sectors: highway vehicles (onroad), oil and gas, and fire emissions
- We compare emissions trends from:
 - EQUATES inventory emissions (before SMOKE processing)
 - Platform inventories based on a mix of NEI's and emissions modeling platforms (see supplemental slide for more information)
- A high-level summary of the methods used for EQUATES CONUS emissions is provided in the supplemental slides.


9

Highway NO_X and VOC Emissions

Petroleum and Related Industries NO_X Emissions



Environmental Protection

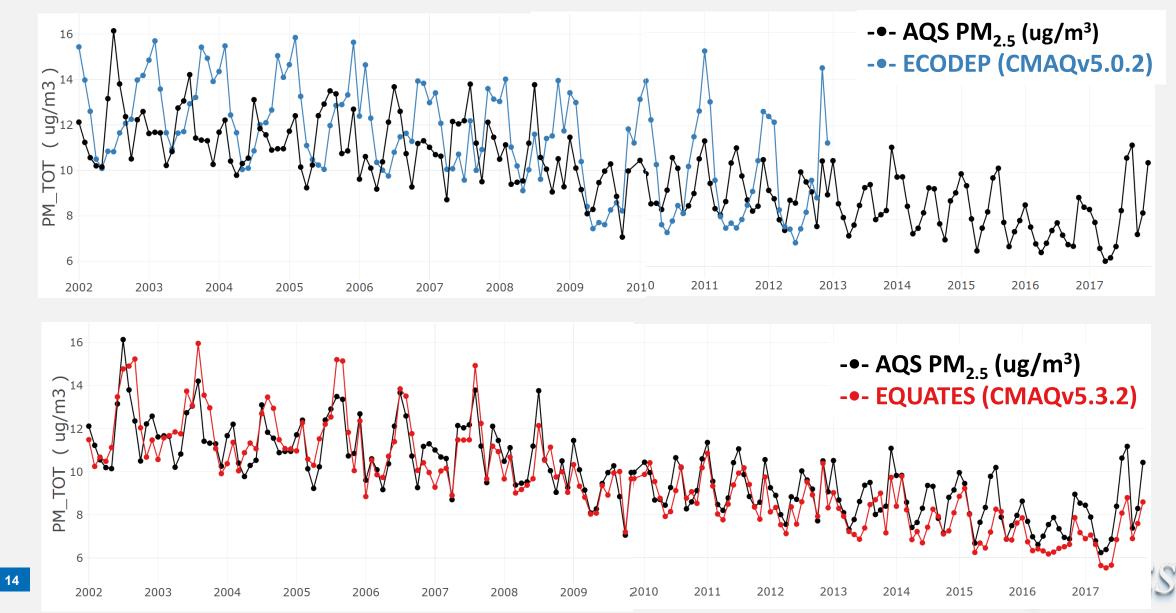
Agency

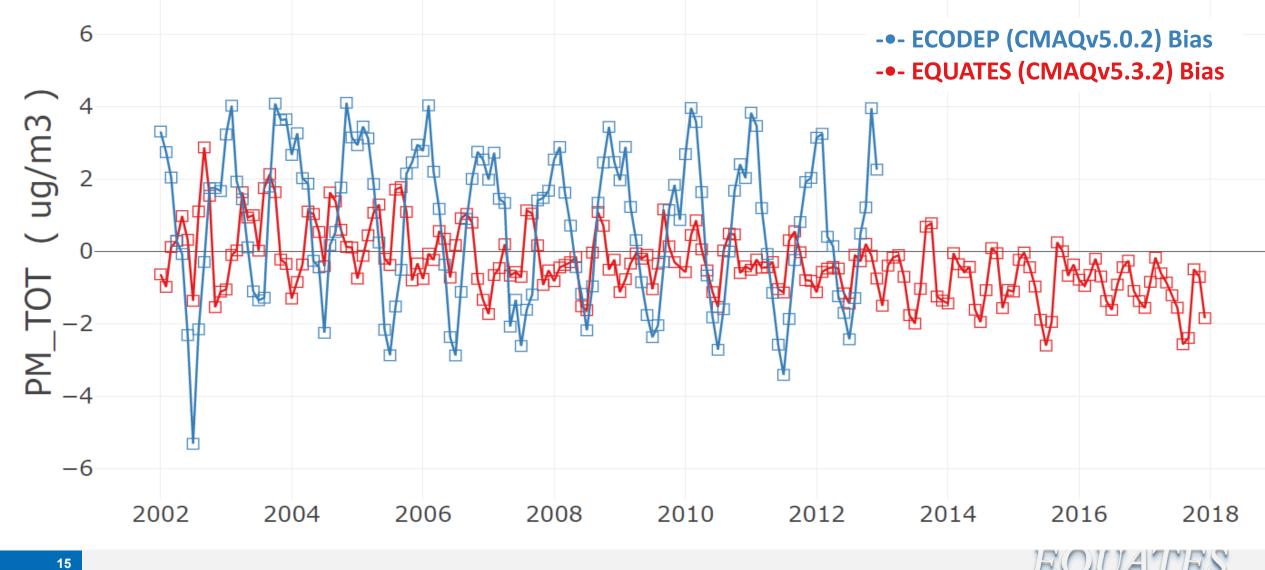
Environmental Protection

Agency

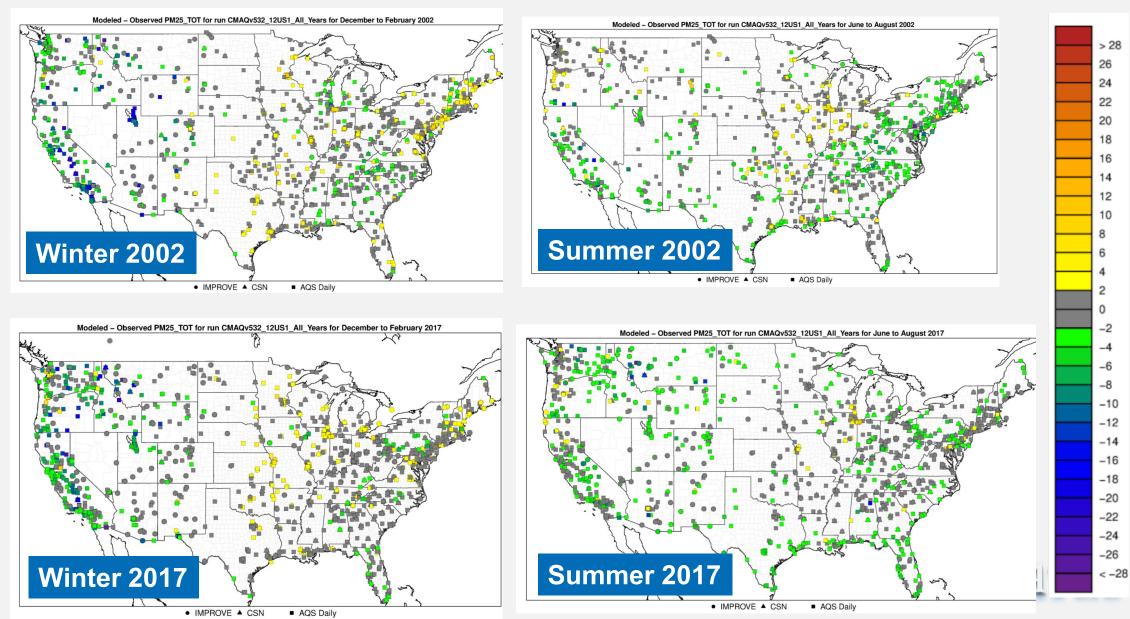
CMAQ Evaluation: ECODEP vs EQUATES

- The following slides show a few highlights of the evaluation of the EQUATES CMAQv5.3.2 simulations by comparing results from the ECODEP CMAQv5.0.2 simulations.
- We focus on PM_{2.5}, maximum daily 8-hr average ozone (MDA8 O₃), and NO_X.



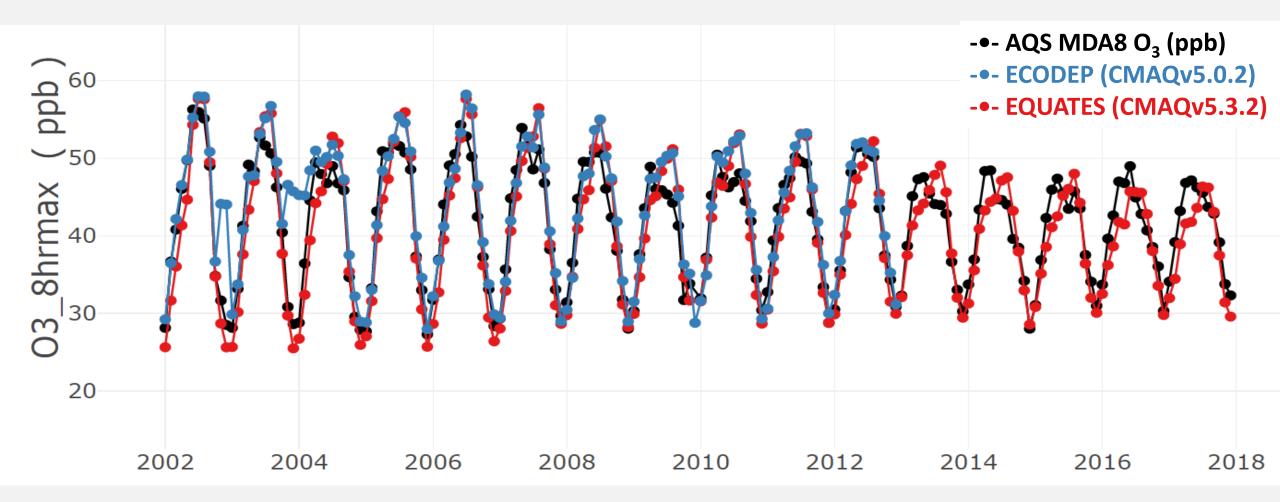


Seasonal Pattern in Monthly Average PM_{2.5}

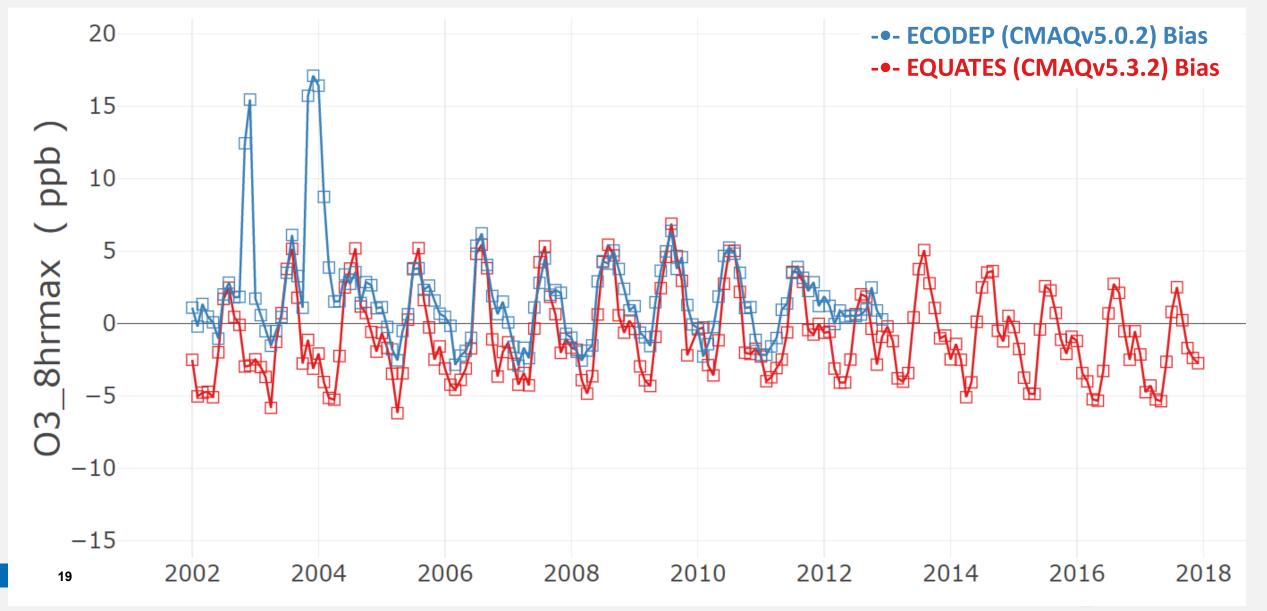

2002 - 2017 PM_{2.5} Monthly Mean Bias

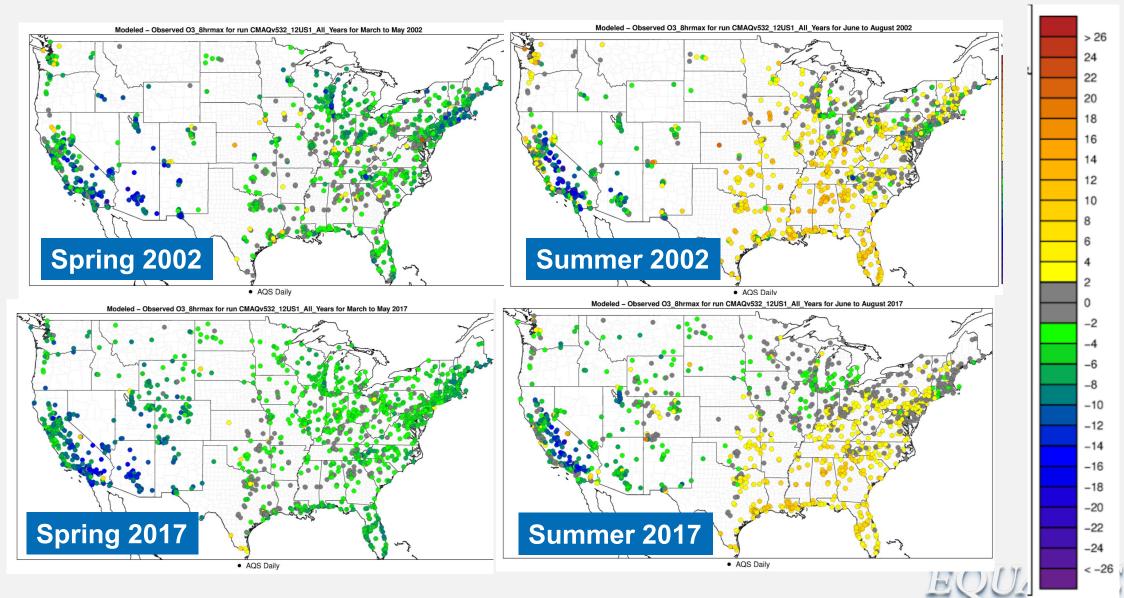
16

EQUATES Winter/Summer Mean Bias in PM_{2.5}

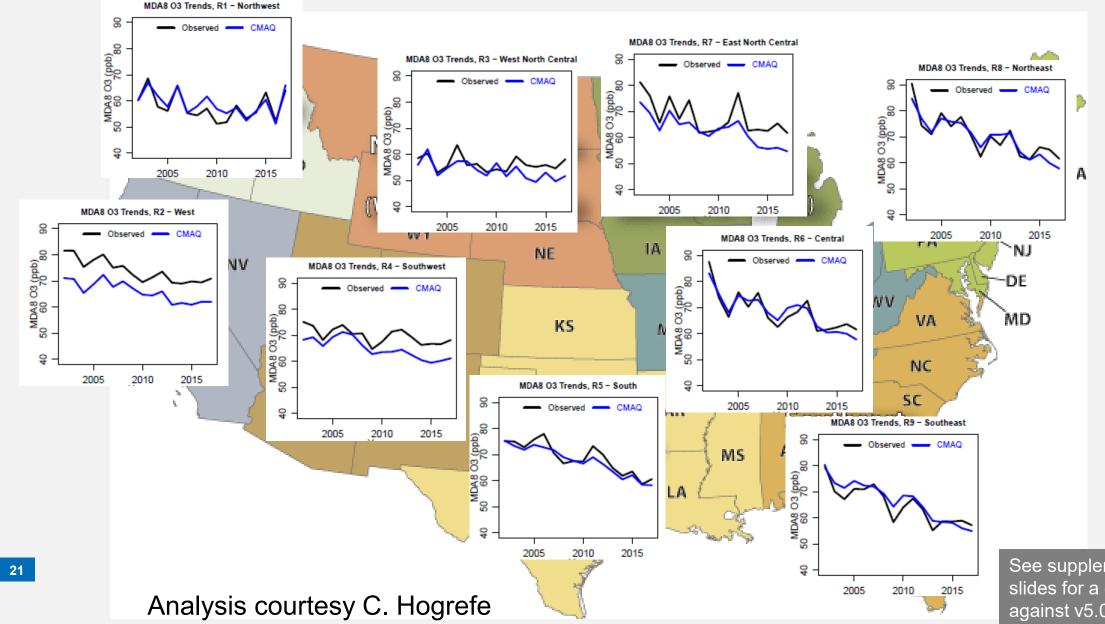


Maximum Daily 8-hr Average Ozone


2002 - 2017 Seasonal Pattern in MDA8 O₃



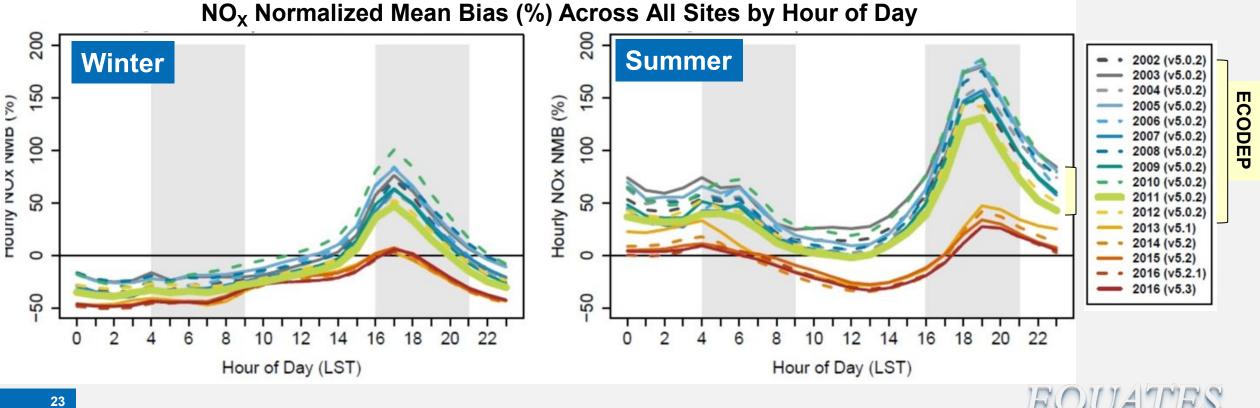
2002 - 2017 Seasonal Pattern in MDA8 O₃ Mean Bias



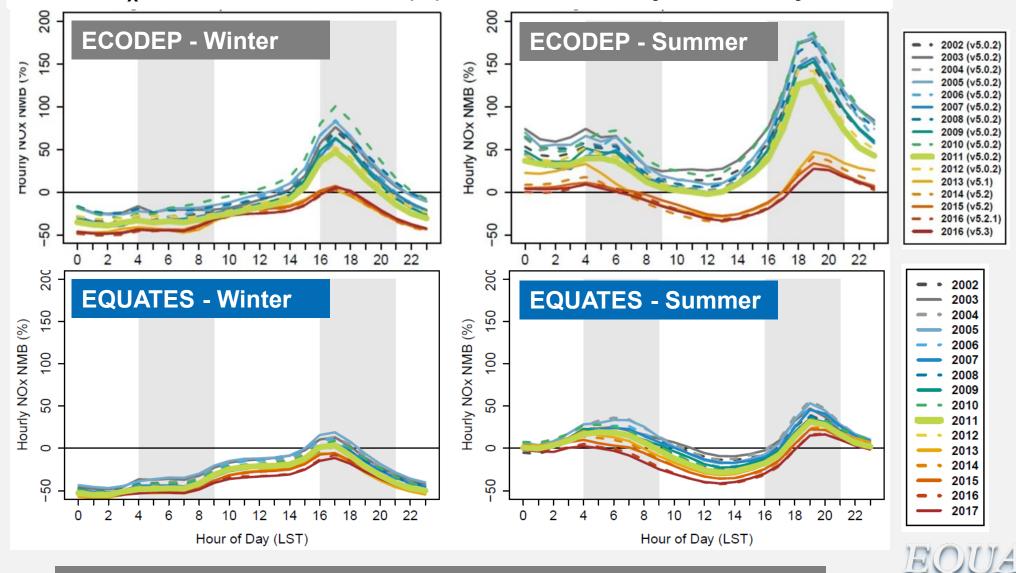
EQUATES: Spring/Summer Mean Bias in MDA8 O₃

EQUATES: Trends in 95th Percentile MDA8 O₃ Ozone Season (May –Sept)

See supplemental slides for a comparison against v5.0.2 trends.

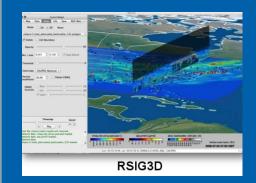


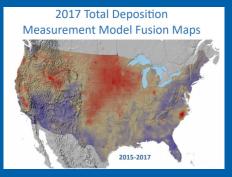
ECODEP NO_x Evaluation


 Toro et al. (2021) – Evaluation of NO_x estimates from 2002-2016 CMAQ simulations. Figure 4 from the paper shows the diurnal pattern of the normalized mean bias in NO_x at AQS sites in summer and winter.

ECODEP vs EQUATES NO_x Evaluation

NO_x Normalized Mean Bias (%) Across All Sites by Hour of Day


EQUATES Data Sharing


- Initial data sharing effort is through the CMAS Data Warehouse
 - Emissions inventory files (SMOKE inputs)
 - CMAQ-ready meteorology, emissions, IC/BC input files for the 12US1 domain – including fertilizer inputs from EPIC to be used with the bidirectional NH₃ module in CMAQ
 - WRF evaluation datasets (matched model/obs data)
 - Daily average CMAQ output for the 12US1 domain for 14 pollutants
 - Daily average 3D CMAQ output for the 108NHEMI domain can be used to create boundary conditions for domains within the N. hemisphere
- More data will be shared via other platforms in coming months

Visit <u>www.epa.gov/EQUATES</u> for more information

CMAS Data Warehouse

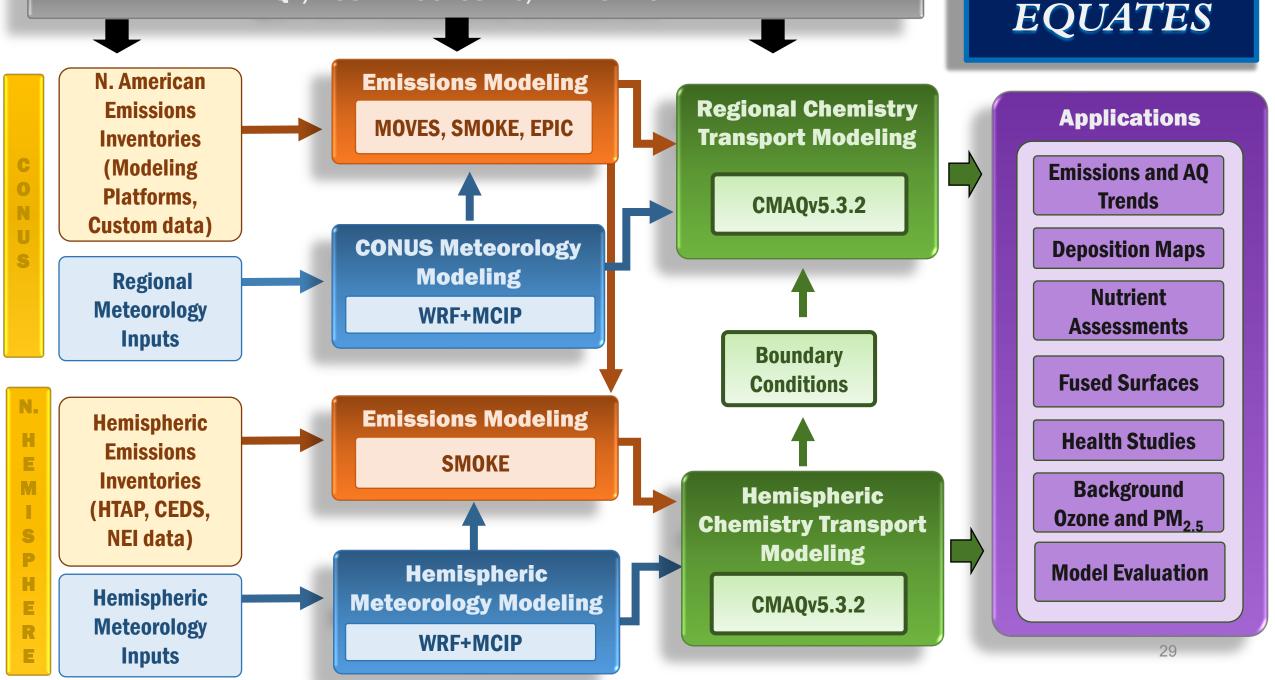
Conclusions

- EQUATES provides a unified set of emissions, meteorology, and air quality modeling data for 2002-2017
- EQUATES emissions were developed using the latest tools and datasets to reduce step changes that can occur between NEIs due to changes in methods and input data
- CMAQ evaluation compared to previous timeseries:
 - Seasonality of PM_{2.5} estimates is greatly improved
 - Summer NO_X bias is greatly decreased
 - Underestimation that needs further diagnostic evaluation: wintertime $PM_{2.5}$, springtime ozone, 95th percentile ozone in recent years, wintertime NO_X
- EQUATES modeling datasets have been made publicly available to support additional analysis and evaluation

For more information on the slides in this presentation, please contact:

Kristen Foley (EPA/ORD/CEMM) Foley.Kristen@epa.gov

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA.



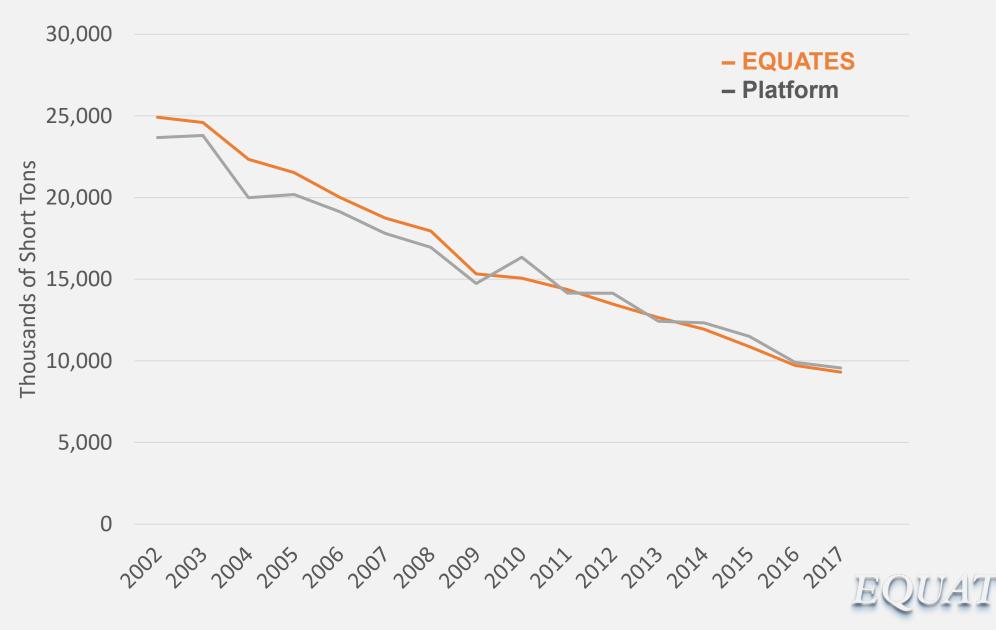
Supplemental Slides

QA/POST-PROCESSING/EVALUATION

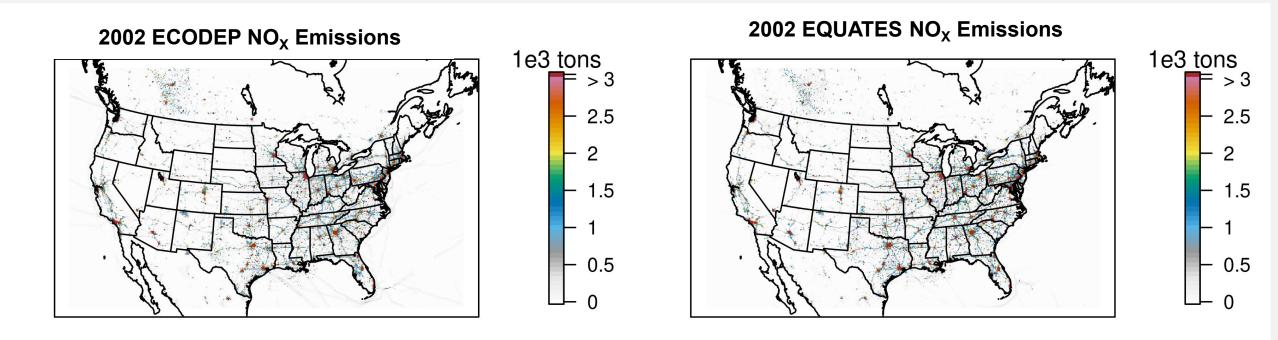
EQUATES CONUS Emissions Methods Table

Source	Category Name(s)	Brief Method Description
Agriculture	ag	NH3 fertilizer emissions estimated online in CMAQ. All other emissions based on scaling 2017 NEI values based on USDA
		animal head counts.
Electrical Generating Units	ptegu, cem	Use existing data (from multiple NEIs) for all years but processed using most recent tools/methods.
Fires	ptfire, ptfire_grass, ptagfire	Based on new methods (Pouliot, 2020 CMAS presentation)
Fugitive Dust	afdust	For ag dust, unpaved road dust, and paved road dust, use 2017 NEI data and scaling factors based on activity surrogates.
		All other sources use 2017 NEI data for all years
Mobile – Airports	airports	Use 2017 NEI data and scaling factors based on FAA Terminal Area Forecast data
Mobile - Commercial Marine Vessels	cmvc1c2, cmvc3	Use 2017 NEI data and scaling factors based on regional fuel consumption as an activity surrogate with additional
		pollutant-specific adjustments for fuel standards
Mobile – Nonroad	nonroad_gas, nonroad_diesel	Estimated using MOVES2014b supplemented with new data for CA and TX
Mobile – Onroad	onroad_gas, onroad_diesel	Estimated using MOVE3 supplemented with new data for CA
Mobile - Rail	rail	Use 2017 NEI data and scaling factors based on fuel sales data as an activity surrogate with additional adjustment for
		specific pollutants to account for regulation and sulfur technology
Oil and Gas	pt_oilgas	Use year-specific modeling platform data (based on multiple NEIs)
Oil and Gas	np_oilgas	Oil and Gas Tool
Other Nonpoint Sources -Commercial Cooking	nonpt	Use year-specific modeling platform data (based on multiple NEIs)
Other Nonpoint Sources -Fuel Combustion	nonpt	Commercial and Industrial Biomass use 2017 NEI data and scaling factors based on national-level consumption data. For all
		other emissions use year-specific modeling platform data (based on multiple NEIs).
Other Nonpoint Sources - Gas Stations	nonpt	Linear interpolation between 2002 and 2017 modeling platform data
Other Nonpoint Sources - Industrial Processes	nonpt	Use year-specific modeling platform data (based on multiple NEIs)
Other Nonpoint Sources - Miscellaneous	nonpt	2017 NEI data for all years
Other Nonpoint Sources - Waste Disposal	nonpt	Use 2017 NEI data for all years, except composting. For composting scale 2017 NEI values based on activity surrogate.
Other Point Sources - Fuel Combustion	ptnonipm	Use year-specific modeling platform data (based on multiple NEIs)
Other Point Sources - Gas Stations	ptnonipm	Linear interpolation between 2002 NEI and 2017 NEI data.
Other Point Sources - Industrial Processes	ptnonipm	Use year-specific modeling platform data (based on multiple NEIs)
Other Point Sources - Miscellaneous	ptnonipm	2017 NEI data for all years
Other Point Sources - Waste Disposal	ptnonipm	Use 2017 NEI data for all years, except composting. For composting scale 2017 values based on activity surrogate.
Residential Wood Combustion	rwc	Scale 2017 NEI values based on national-level consumption data
Volatile Chemical Products including Solvents	np_solvents	Based on new method (<u>Seltzer et al., 2021</u>)

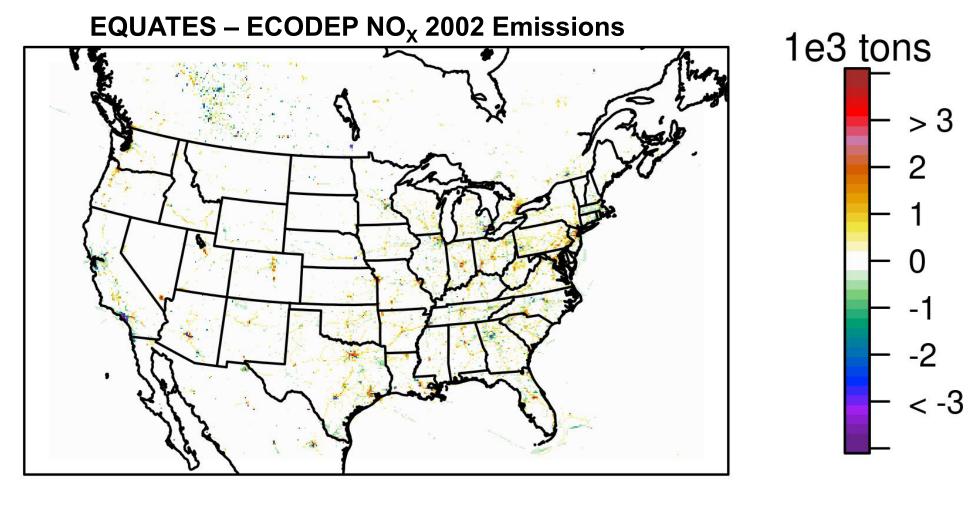
Pre-SMOKE Emissions for Platform Case


- Pre-SMOKE annual CONUS emissions totals for Platform Case:
 - Emissions modeling platform data used for 2002-2012 CMAQv5.0.2 simulations ("ECODEP")
 - Additional emissions modeling platform data for 2013-2017
 - Platform data are based on several different NEIs and include substantial methods changes across the 16 years

is for	Year	NEI	Emission Case	based on OAQPS case
	2002	2002 NEI v3	E40 2002af	2005ct_ldghg_05b LDGHG Base
	2003	2002 NEI v3	E40 2003af CB05	2005ct_ldghg_05b LDGHG Base
	2004	2005 NEI v3	E40_2005ct_04	2005ct_ldghg_05b LDGHG Base
ECODEP	2005	2005 NEI v3	E40_2005ct	2005ct_ldghg_05b LDGHG Base
	2006	2008 NEIv3	E40 2007ed_06 CB05	2007ed_v5_07c Shakeout Run4
	2007	2008 NEIv3	2007ec	2007ec
	2008	2008 NEIv3	F40_2008ab	2008aa_08c CDC
	2009	2008 NEIv3	F40_2009ef	2009ef_v5_09d CDC
	2010	2008 NEIv3	E40 2007ed_10	2007ed_v5_07c Shakeout Run4
	2011	2011 NElv1	2011ed	
l	2012	2011 NElv1	2011ed_12	
	2013	2011 NElv2 with updates	2013ek_cb6cmaq	2013ek_cb6cmaq_v6_11g
	2014	2014 NEIv2 / 2016 alpha	2014fd_cb6_14j	2014fd_cb6_14j 2014v2 for CB6 CMAQ
	2015	2014 NEIv2 / 2016 alpha+	2015fe_cb6_15j	2015fe_cb6_15j CDC 2015
	2016	2014 NEIv2 / 2016 v1	2016fh_16j v1	2016fh_16j version 1 platform
	2017	2017 NElv1		

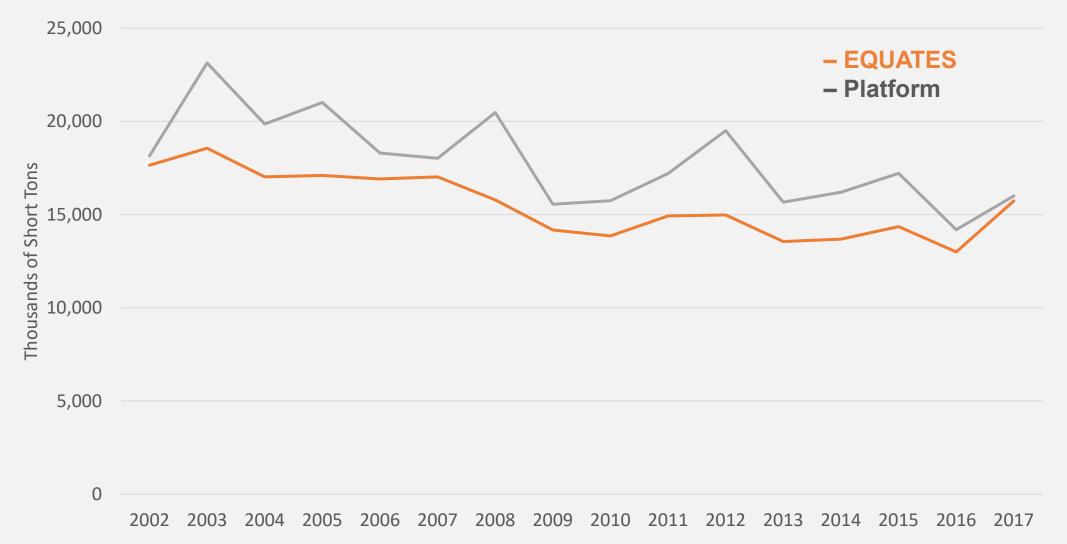


NO_X Anthropogenic Emissions

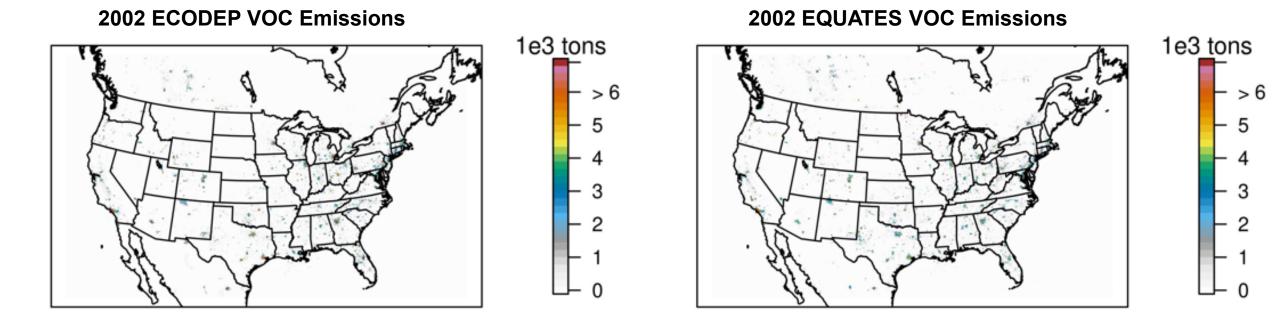

ECODEP vs EQUATES: 2002 Anthropogenic NO_X Emissions

Domain size: 299x459 | Max = 120 at (38, 182) Mean: 0.21 | Median: 0.012 Domain size: 299x459 | Max = 70 at (143, 320) Mean: 0.21 | Median: 0.011

EQUATIES



Min = -120 | Max = 28

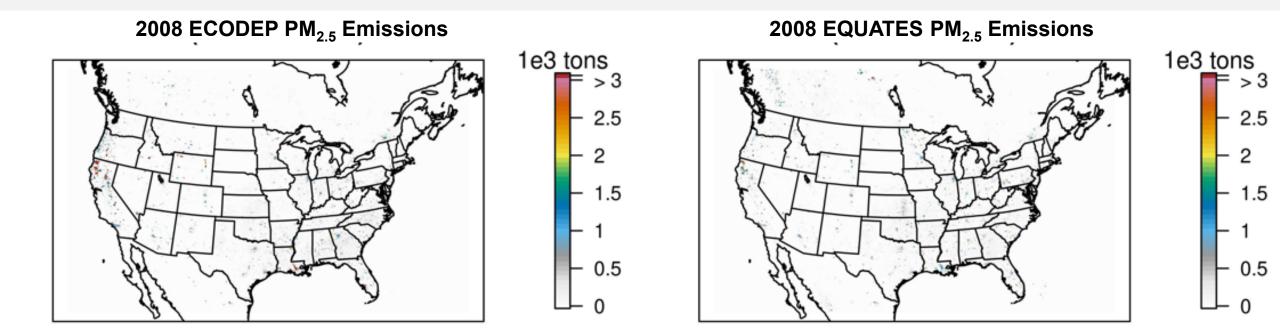

VOC Anthropogenic Emissions

ECODEP vs EQUATES: 2002 Anthropogenic VOC Emissions

Domain size: 299x459 | Max = 150 at (194, 33) Mean: 0.12 | Median: 0.0054 Domain size: 299x459 | Max = 110 at (194, 33) Mean: 0.11 | Median: 0.005

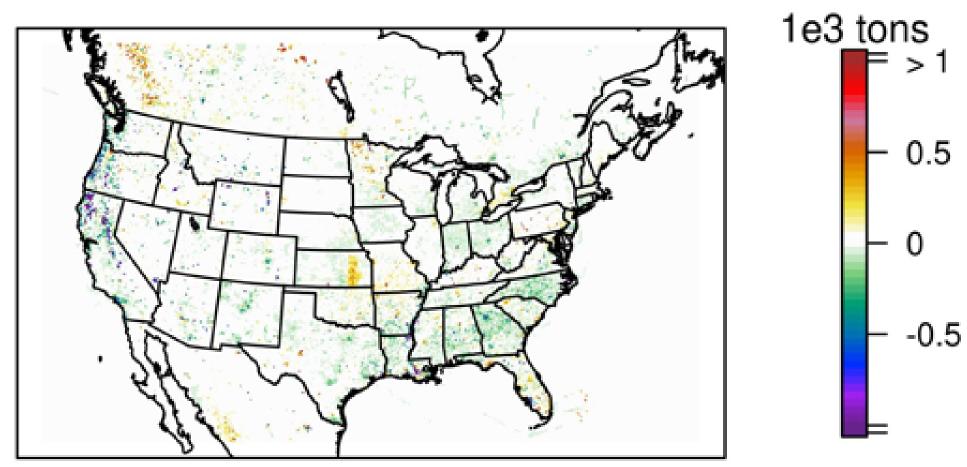
EQUATIES

EQUATES – ECODEP VOC 2002 Emissions 1e3 tons 1e3 tons


Min = -69.2 | Max = 24.9 Mean: -0.00435 | Median: 1.01e-05

-2

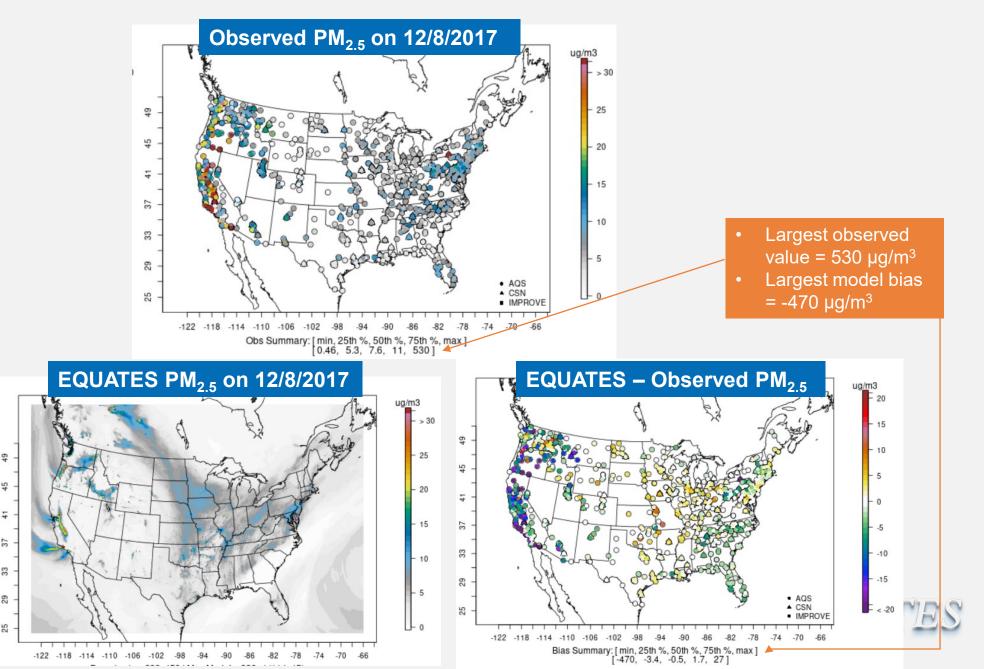
ECODEP vs EQUATES: 2008 PM_{2.5} Emissions



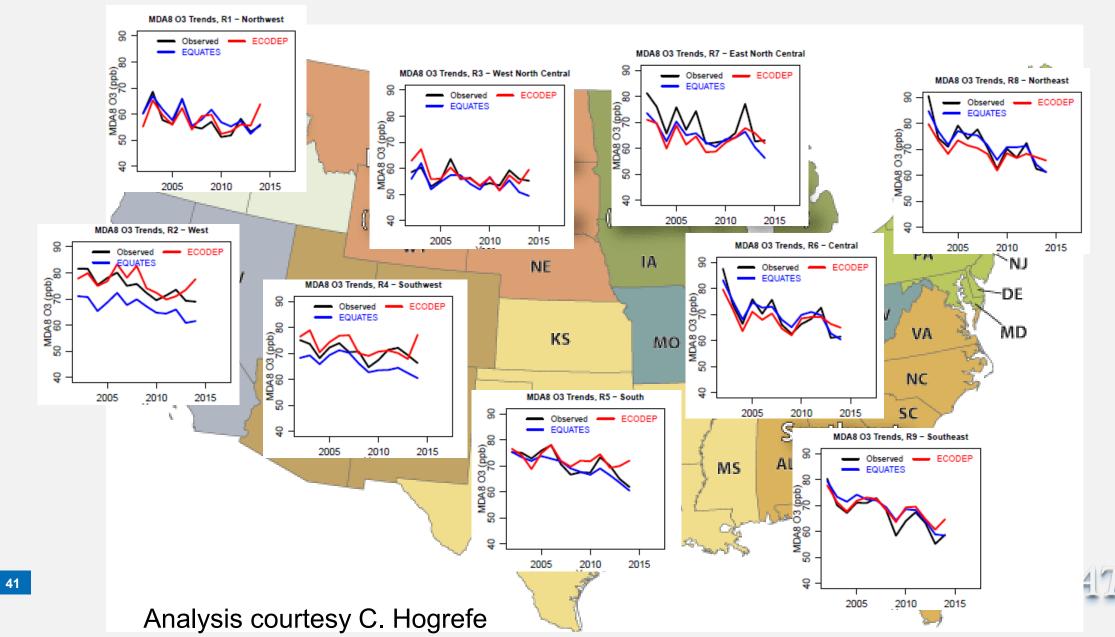
Domain size: 299x459 | Max = 74 at (199, 44) Mean: 0.047 | Median: 0.0037 Domain size: 299x459 | Max = 19 at (174, 38) Mean: 0.035 | Median: 0.0016

EQUATES – ECODEP PM_{2.5} 2008 Emissions

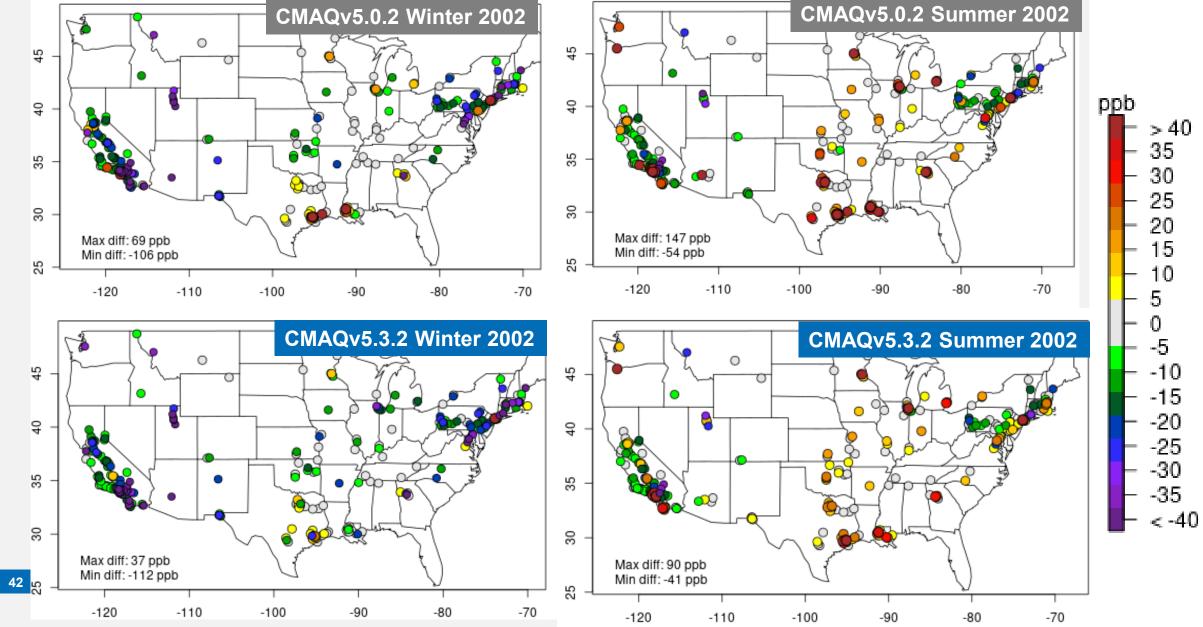
Min = -69.4 | Max = 18.4



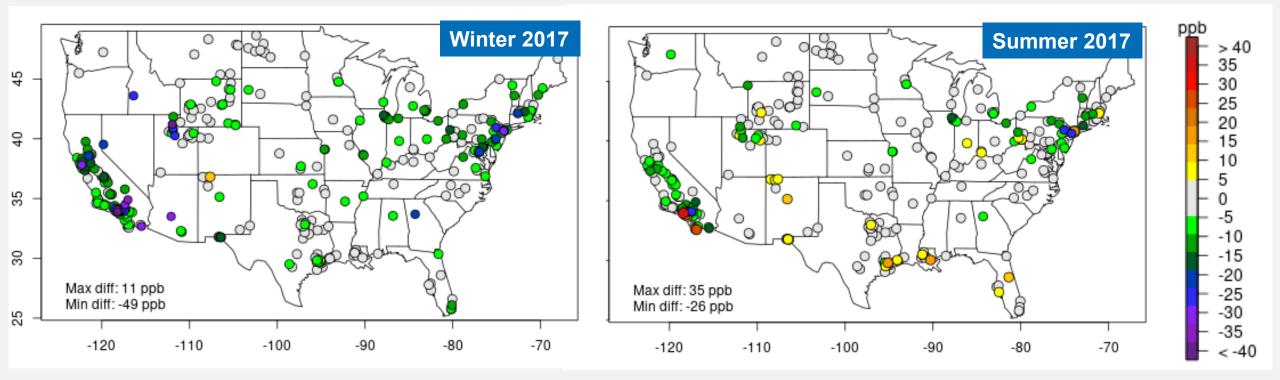
Satellite image of the smoke from the Thomas Fire and 2 smaller wildfires, on December 5, 2017.


Impact of Wildfires on PM_{2.5} Seasonal Bias

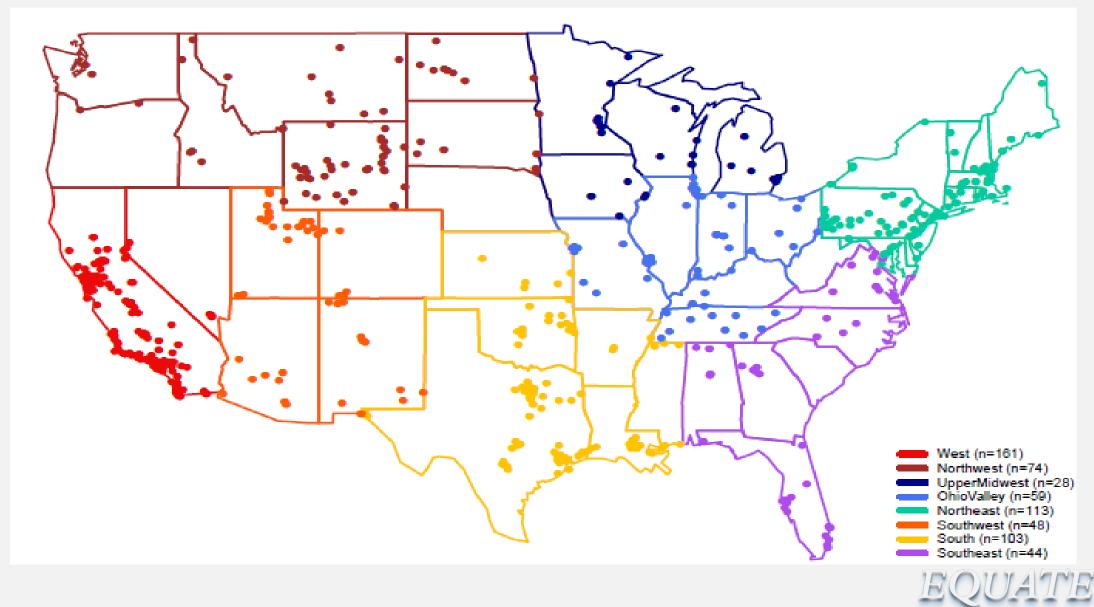
40



EQUATES vs ECODEP: Trends in 95th Percentile MDA8 O₃ Ozone Season (May –Sept)



EQUATES vs ECODEP: 2002 Winter/Summer Bias in 4-9am NO_X



EQUATES 2017 Winter/Summer Bias in 4-9am NO_X

EQUATIES

AQS Sites Grouped by NOAA Climate Regions

United States

Agency

Environmental Protection

CMAQv5.0.2-CMAQv5.3: 4am-7am NO_x NMB (%) by **Region/Season/Year**

	West	- NOx NI	MB [4am-	9am]
(v5.3) 2016-	-54	-29	-14	-43
(v5.2.1) 2016-	-54	-27	-11	-42
(v5.2) 2015-	-54	-34	-8	-40
(v5.2) 2014-	-56	-33	-13	-42
(v5.1) 2013-	-57	-19	1	-35
(v5.0.2) 2012-	-48	-20	6	-28
(v5.0.2) 2011-	-54	-26	6	-30
(v5.0.2) 2010-	-28	-4	38	-11
(v5.0.2) 2009-	-51	-20	-3	-32
(v5.0.2) 2008-	-41	-24	10	-30
(v5.0.2) 2007-	-55	-30	-1	-34
(v5.0.2) 2006-	-45	2	20	-11
(v5.0.2) 2005-	-39	-11	9	-24
(v5.0.2) 2004-	-51	-25	9	-28
(v5.0.2) 2003-	-42	-10	6	-20
(v5.0.2) 2002-	-45	-2	8	-21
	winter	spring	summer	fall

	Northwe	est – NOx	NMB [4ar	n-9am]
(v5.3) 2016-	-41	-33	-27	-31
(v5.2.1) 2016-	-41	-31	-22	-29
(v5.2) 2015-	-39	-36	-27	-31
(v5.2) 2014-	-43	-35	-32	-41
(v5.1) 2013-	-35	-30	-16	-31
(v5.0.2) 2012	-23	-8	2	-17
(v5.0.2) 2011-	-5	8	15	-5
(v5.0.2) 2010-	-12	13	29	16
(v5.0.2) 2009-	21	40	66	27
(v5.0.2) 2008-	-19	-6	14	22
(v5.0.2) 2007-	-21	-6	41	19
(v5.0.2) 2006-	-61	-37	13	-37
(v5.0.2) 2005-	-67	-21	35	-8
(v5.0.2) 2004-	-78	-46	48	-12
(v5.0.2) 2003-	-85	-45	17	-44
(v5.0.2) 2002-	-57	-5	44	-54
	winter	spring	summer	fall

Percent
> 80 60 to 80 40 to 60 20 to 40 -20 to 20 -40 to -20 -60 to -40 -80 to -60 -100 to -80

Figure from <u>Toro</u> et al. (2021) (Supplemental Figures)

	UpperMid	west - NO	0x NMB [4	am-9am]
(v5.3) 2016-	-24	-8	5	-16
(v5.2.1) 2016-	-26	-14	-4	-23
(v5.2) 2015-	-21	-6	34	-7
(v5.2) 2014-	-31	-14	20	-18
(v5.1) 2013-	-21	0	26	-12
(v5.0.2) 2012-	1	40	76	17
(v5.0.2) 2011-	18	30	88	22
(v5.0.2) 2010-	17	42	118	41
(v5.0.2) 2009-	-3	40	112	39
(v5.0.2) 2008-	22	53	109	35
(v5.0.2) 2007-	35	60	146	70
(v5.0.2) 2006-	41	65	137	50
(v5.0.2) 2005-	38	52	114	56
(v5.0.2) 2004-	12	46	115	52
(v5.0.2) 2003-	45	55	118	61
(v5.0.2) 2002-	24	50	99	64
	winter	spring	summer	fall

	OhioVal	ley – NOx	NMB [4ai	m-9am]
(v5.3) 2016-	-36	-14	9	-20
(v5.2.1) 2016-	-39	-21	0	-26
(v5.2) 2015-	-31	-14	12	-17
(v5.2) 2014-	-31	-21	8	-20
(v5.1) 2013-	-27	-16	17	-15
(v5.0.2) 2012-	-12	14	35	-1
(v5.0.2) 2011-	0	14	54	0
(v5.0.2) 2010-	-5	-1	41	7
(v5.0.2) 2009-	-6	6	35	26
(v5.0.2) 2008-	-6	-2	31	6
(v5.0.2) 2007 -	-7	12	56	16
(v5.0.2) 2006-	-4	9	56	12
(v5.0.2) 2005-	4	22	86	25
v5.0.2) 2004 -	-11	10	51	10
v5.0.2) 2003-	-3	22	72	14
(v5.0.2) 2002-	-2	23	53	5
	winter	spring	summer	fall

South - NOx NMB [4am-9am]

31

38 23

18

37

83

68

164

154

summer

-13

15

48

48

29

23

67

fall

-5

-4

8

-16

-6

31

10

43

40

72

27

32

78

74

spring

(v5.3) 2016-(v5.2.1) 2016-

(v5.2) 2015

(v5.2) 2014·

(v5.1) 2013

(v5.0.2) 2012

(v5.0.2) 2011 (v5.0.2) 2010·

(v5.0.2) 2009

(v5.0.2) 2008

(v5.0.2) 2007

(v5.0.2) 2006∙

(v5.0.2) 2005∙

(v5.0.2) 2004-

(v5.0.2) 2003

(v5.0.2) 2002-

-20

-19

-21

-22

-22

0

-4

1

30

-1

-6

40

35

45

23

winter

(VJ.Z.1)	2010	45			32
(v5.2)	2015-	-41	-38	-8	-33
(v5.2)	2014-	-41	-32	0	-27
	2013-	-36	-25	-6	-28
(v5.0.2)	2012-	-20	-8	29	-2
(v5.0.2)		-33	-11	3	-19
(v5.0.2)		-15	-9	26	-2
(v5.0.2)	2009-	-34	-22	18	-8
(v5.0.2)	2008-	-25	-22	3	-17
(v5.0.2)	2007-	-24	-26	8	-12
(v5.0.2)	2006-	-19	-11	41	-3
(v5.0.2)	2005-	-29	-19	8	-17
(v5.0.2)		-35	-18	6	-20
(v5.0.2)	2003-	-24	-17	19	-15
(v5.0.2)	2002-	-30	-18	2	-12

-47

-45

(v5.3) 2016-(v5.2.1) 2016-

winter spring summer

Northeast - NOx NMB [4am-9am]

-14

-7

-34

-32

fall

-35

-33

	Southe	ast – NOx	NMB [4ar	n-9am]
0164	-37	-20	16	-20

(v5.3) 2016-	-37	-20	16	-20
(v5.2.1) 2016-	-39	-22	16	-23
(v5.2) 2015-	-33	-15	12	-14
(v5.2) 2014-	-33	-17	16	-13
(v5.1) 2013-	-24	-9	27	-9
(v5.0.2) 2012-	-9	27	95	20
(v5.0.2) 2011-	-17	15	62	13
(v5.0.2) 2010-	-7	20	108	33
(v5.0.2) 2009-	-14	15	76	27
(v5.0.2) 2008-	9	23	84	25
(v5.0.2) 2007-	16	20	113	47
(v5.0.2) 2006-	-9	10	80	12
(v5.0.2) 2005-	-12	2	109	9
(v5.0.2) 2004-	-30	-1	78	28
(v5.0.2) 2003-	1	51	122	27
(v5.0.2) 2002-	-17	15	93	44
				C 11

(V5.2)) 2015-	-21	-6	34	
(v5.2)) 2014-	-31	-14	20	
(v5.1)	2013-	-21	0	26	
(v5.0.2)	2012-	1	40	76	
(v5.0.2)	2011-	18	30	88	
(v5.0.2)	2010-	17	42	118	
(v5.0.2)	2009-	-3	40	112	
(v5.0.2)	2008-	22	53	109	
(v5.0.2)	2007-	35	60	146	
(v5.0.2	2006-	41	65	137	
(v5.0.2	2005-	38	52	114	
λy5 0 2	2004-	12	46	115	

	Southwest - NOx NMB [4am-9am]				
(v5.3) 2016-		-9	-2	-4	
(vŠ.2.1) 2016-	-35	-8	4	-3	
(v5.2) 2015-	-33	-6	23	-4	
(v5.2) 2014-	-45	-27	-10	-30	
(v5.1) 2013-	-55	-30	-17	-37	
(v5.0.2) 2012-	-38	-23	7	-24	
(v5.0.2) 2011-	-41	-11	12	-21	
(v5.0.2) 2010-	-49	-30	1	-29	
(v5.0.2) 2009-	-48	-12	27	-20	
(v5.0.2) 2008-	-47	-29	5	-31	
(v5.0.2) 2007-	-50	-30	-2	-31	
(v5.0.2) 2006-	-46	-27	6	-23	
(v5.0.2) 2005-	-46	-7	21	-20	
(v5.0.2) 2004-	-56	-23	5	-24	
(v5.0.2) 2003-	-50	-18	-2	-29	
(v5.0.2) 2002-	-58	-29	-18	-35	
	winter	spring	summer	fall	

45

EQUATES: 4am-7am NO_x NMB (%) by Region/Season/Year

Northwest - NOx NMB [4am-9am]					
-43	-29	-18	-28		
-43	-31	-18	-28		
-47	-41	-23	-32		
-48	-39	-25	-37		
-38	-28	-1	-23		
-23	-12	-2	-20		
-4	11	29	0		
-1	25	51	29		
-9	14	31	1		
-15	4	35	33		
-30	-16	32	6		
-47	-19	28	-25		
-57	-12	30	-6		
-70	-45	26	-17		
-78	-43	4	-42		
-62	-26	21	-56		

fall

-13

fall

(v5.3.2) 2017-	-62	-35	-15	-49	(v5.3.2) 2017-
(v5.3.2) 2016-	-59	-31	-12	-47	(v5.3.2) 2016-
(v5.3.2) 2015-	-59	-37	-7	-45	(v5.3.2) 2015-
(v5.3.2) 2014-	-61	-33	-1	-43	(v5.3.2) 2014-
(v5.3.2) 2013-	-64	-25	0	-42	(v5.3.2) 2013-
(v5.3.2) 2012-	-56	-27	2	-40	(v5.3.2) 2012-
(v5.3.2) 2011-	-59	-28	7	-38	(v5.3.2) 2011-
(v5.3.2) 2010-	-51	-31	8	-39	(v5.3.2) 2010-
(v5.3.2) 2009-	-59	-25	-1	-39	(v5.3.2) 2009-
(v5.3.2) 2008-	-52	-34	1	-42	(v5.3.2) 2008-
(v5.3.2) 2007-	-57	-28	5	-37	(v5.3.2) 2007-
(v5.3.2) 2006-	-57	-21	-2	-35	(v5.3.2) 2006-
(v5.3.2) 2005-	-46	-18	5	-34	(v5.3.2) 2005-
(v5.3.2) 2004	-52	-24	13	-33	(v5.3.2) 2004-
(v5.3.2) 2003-	-50	-23	-6	-34	(v5.3.2) 2003-
(v5.3.2) 2002-	-53	-15	-1	-35	(v5.3.2) 2002-
	winter	spring	summer	fall	

UpperMidwest - NOx NMB [4am-9am]

West - NOx NMB [4am-9am]

(v5.3.2) 2017-

(v5.3.2) 2016-

(v5.3.2) 2015-(v5.3.2) 2014-

(v5.3.2) 2013

(v5.3.2) 2012-(v5.3.2) 2011-

(v5.3.2) 2010-(v5.3.2) 2009-

(v5.3.2) 2008[.]

(v5.3.2) 2007

(v5.3.2) 2006-

(v5.3.2) 2005-

(v5.3.2) 2004-(v5.3.2) 2003-

(v5.3.2) 2002-

winter	spring	summer

(v5.3.2) 2002-

(v5.3.2) 2017-

(v5.3.2) 2016-

(v5.3.2) 2015-

(v5.3.2) 2014-

(v5.3.2) 2013

(v5.3.2) 2012-

(v5.3.2) 2011

(v5.3.2) 2010-

(v5.3.2) 2009-

(v5.3.2) 2008-

(v5.3.2) 2007

(v5.3.2) 2006-

(v5.3.2) 2005-

(v5.3.2) 2004 ·

(v5.3.2) 2003-

(v5.3.2) 2002-

-23

winter

-31

-31

-30

-21

-27

-16

-12

-15

-17

-17

-16

-9

0

3

1

Northeast – NOx NMB [4an

Percent

80 to 100

60 to 80

-20 to 20

-40 to -20

-60 to -40

-80 to -60

-100 to -80

40 to 60 20 to 40

(v5.3.2) 2017-	-48	-37	-15	-38
(v5.3.2) 2016-	-54	-41	-16	-40
(v5.3.2) 2015-	-47	-42	-11	-37
(v5.3.2) 2014-	-45	-35	-2	-30
(v5.3.2) 2013-	-44	-27	-6	-29
(v5.3.2) 2012-	-43	-25	4	-27
(v5.3.2) 2011-	-50	-31	-15	-37
(v5.3.2) 2010-	-43	-35	-13	-34
(v5.3.2) 2009-	-46	-29	6	-25
(v5.3.2) 2008-	-40	-30	-4	-29
(v5.3.2) 2007-	-39	-34	0	-24
(v5.3.2) 2006-	-35	-23	14	-24
(v5.3.2) 2005-	-34	-20	10	-22
(v5.3.2) 2004-	-34	-14	16	-19
(v5.3.2) 2003-	-28	-19	15	-22
(v5.3.2) 2002-	-32	-19	8	-16
	winter	spring	summer	fall

(v5.3.2) 2017-	-47	-26	-13	-36
(v5.3.2) 2016-	-44	-24	-6	-32
(v5.3.2) 2015-	-40	-20	6	-25
(v5.3.2) 2014-	-37	-24	6	-26
(v5.3.2) 2013-	-34	-18	17	-20
(v5.3.2) 2012-	-36	-5	9	-25
(v5.3.2) 2011-	-24	-6	28	-18
(v5.3.2) 2010-	-23	1	45	-16
(v5.3.2) 2009-	-25	-3	26	-2
(v5.3.2) 2008-	-23	-4	37	-13
(v5.3.2) 2007-	-22	15	51	-5
(v5.3.2) 2006-	-11	16	54	1
(v5.3.2) 2005-	-17	13	72	14
(v5.3.2) 2004-	-25	4	49	-2
(v5.3.2) 2003-	-20	11	55	-2

spring

-1

-1

-1

1

-2

14

10

11

2

2

34

OhioValley - NOx NMB [4am-9am]

(v5.3.2) 2017-	-36	-19	-6	-23
(v5.3.2) 2016-	-36	-19	-7	-29
(v5.3.2) 2015-	-32	-16	24	-18
(v5.3.2) 2014-	-36	-19	18	-21
(v5.3.2) 2013-	-34	-10	24	-19
(v5.3.2) 2012-	-26	12	43	-11
(v5.3.2) 2011-	-12	6	61	-5
(v5.3.2) 2010-	-15	14	64	4
(v5.3.2) 2009-	-24	16	77	11
(v5.3.2) 2008-	-7	24	67	0
(v5.3.2) 2007-	-6	20	81	15
(v5.3.2) 2006-	3	23	73	2
(v5.3.2) 2005-	7	24	68	18
(v5.3.2) 2004-	-3	25	80	22
(v5.3.2) 2003-	8	22	70	16
(v5.3.2) 2002-	-2	33	71	28

winter spring summer

-23

-21

-21

-28

-27

-26

-23

-25

-17

-21

-25

-20

-14

-22

-19

-27

spring

-46

-43

-49

-51

-57

-44

-45

-46

-51

-45

-47

-43

-49

-54

-54

-59

winter

Southwest - NOx NMB [4am-9am]

3

2

15

-3

-1

3

9

17

21

22

3

12

14

4

-6

-13

summer

fall

-28

-19

-17

-30

-32

-30

-28

-22

-30

-25

-27

-20

-30

-31

-34

-38

fall

	Southeast – NOx NMB [4am–9am]				
(v5.3.2) 2017-	-50	-35	-7	-41	
(v5.3.2) 2016-	-50	-33	-3	-37	
(v5.3.2) 2015-	-46	-26	3	-26	
(v5.3.2) 2014-	-44	-25	13	-22	
(v5.3.2) 2013-	-39	-18	20	-19	
(v5.3.2) 2012-		-14	18	-25	
(v5.3.2) 2011-	-42	-19	13	-24	
(v5.3.2) 2010-	-41	-23	21	-23	
(v5.3.2) 2009-	-39	-15	15	-17	
(v5.3.2) 2008-	-29	-16	18	-18	
(v5.3.2) 2007-	-29	-19	31	-11	
(v5.3.2) 2006-	-40	-19	24	-21	
(v5.3.2) 2005-	-36	-19	45	-22	
(v5.3.2) 2004-	-41	-14	39	-1	
(v5.3.2) 2003-		6	40	-17	
(v5.3.2) 2002-	-38	-16	37	0	
	winter	spring	summer	fall	

- - - - - - - - - - - -

7	26	-16	(v5.3.2) 2017-	-50
1	29	-1	(v5.3.2) 2016-	-50
	28	1	(v5.3.2) 2015-	-46
1	36	-7	(v5.3.2) 2014-	-44
)	42	3	(v5.3.2) 2013-	-39
	39	-4	(v5.3.2) 2012-	-41
2	43	-7	(v5.3.2) 2011-	-42
l I	64	10	(v5.3.2) 2010-	-41
)	49	8	(v5.3.2) 2009-	-39
	43	-2	(v5.3.2) 2008-	-29
	53	5	(v5.3.2) 2007-	-29
3	55	3	(v5.3.2) 2006-	-40
6	71	11	(v5.3.2) 2005-	-36
2	72	34	(v5.3.2) 2004-	-41
1	67	30	(v5.3.2) 2003-	-26
	79	26	(v5.3.2) 2002-	-38

fall

36

summer

South - NOx NMB [4am-9am]

winter spring summer

EQI	UA	(ת	E
-----	----	----	---