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1. INTRODUCTION 
Most present air quality predictions run on on-

premises hardware with only a small fraction of 
current predictions being generated in cloud 
environments. However, shifting a larger fraction 
of these computations to the public cloud is 
desirable as cloud environments accelerate the 
adoption of new hardware and provide a 
framework to integrate computations, data 
assimilation and high-performance storage with 
nearly infinite capacity. Cloud Service Providers 
(CSPs) provide computational and storage options 
in the form of Infrastructure-as-a-Service (IaaS). 
The extent of these services can be augmented or 
lowered to fit fluctuating workloads or storage 
needs without being tied up to a monolithic 
configuration. From an economic perspective, the 
use of cloud resources eliminates the large upfront 
capital needed to purchase expensive equipment. 
This upfront capital and how to finance it are 
traditionally two of the major challenges for small 
and medium-sized businesses to access HPC 
capabilities. By circumventing this cycle, smaller 
organizations gain access to resources 
traditionally reserved to large businesses, national 
labs, and research universities. Two additional 
advantages from using IaaS are advanced 
security features and the reduction in maintenance 
costs as most of these tasks are performed by 
CSPs’ technical teams. 

 Since the launch of AWS by Amazon in 2006, 
several works including Yelick et al. (2011), 
Mohammadi and Bazhirov (2018), Chang et al. 
(2018) and Fernandez (2021) have examined 
HPC performance in the public cloud with the aid 
of benchmarks such as HPL (Dongarra et al., 
2003) and HPCG (Dongarra et al., 2013) or the 
NASA Parallel Benchmark (Bailey et al., 1991).  
However, benchmarks only provide partial insights 
into performance and a more through 
quantification requires benchmarking the apps 
themselves. For example, Powers et al. (2021) 
have examined the performance of WRF in AWS 
IaaS. However, quantifications of CMAQ 
performance are still at an earlier stage. 

 
*Corresponding autor: Arturo Fernandez, odyhpc 
Murrysville, PA 15668; e-mail: 
afernandez@odyhpc.com, https://odyhpc.com. 

This extended abstract present benchmarks 
for CMAQ and WRF-CMAQ in AWS and Azure 
IaaS using commercial images available to any 
organization or individual with valid accounts.    

 

2. RUNNING CMAQ & WRF-CMAQ  
Commercial images include precompiled 

executables for the apps and their dependencies, 
along with pre and postprocessing tools. The 
CMAQ images are available from the AWS and 
Azure Marketplaces. After subscribing, the user 
can launch instances following regular procedures. 
Fig. 1 shows how AWS launches an instance 
running CMAQ. 

Fig. 1. AWS console showing the launch of an instance. 
 

Once the launch is complete, the user can log 
in using a ssh terminal like any other Linux-based 
instance. The available executables include 
CMAQ, CMAQ- ISAM, CMAQ- DDM3D, and WRF-
CMAQ and postprocessing tools. Fig. 2 shows 
how the CMAQ benchmark runs from a terminal. 

Fig. 2. Running CMAQ from a putty (ssh) terminal. 
 

In AWS, it is also possible to launch clusters 
using AWS-Parallelcuster. These clusters consist 
of a head instance, acting as the manager, plus 
one or more compute instances performing the 
computations. Parallelcluster also facilitates 
launching an elastic cluster where the number of 
instances is variable depending on the workloads. 
The scheduler is slurm so launching jobs proceeds 
similarly to supercomputers.  
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3. PERFORMANCE EVALUATION  
The present evaluation measures 

performance of 2 different apps in AWS and Azure 
IaaS: CMAQ and WRF-CMAQ. Table 1 lists the 
main characteristics of the hardware used to 
perform the benchmarks including instance family 
name, maximum number of cores and memory for 
the largest instance of that family, processor name 
and type/architecture of the processor.  

 

Table. 1. Main characteristics of the instances 
used for CMAQ & WRF-CMAQ benchmarking on 
AWS and Azure IaaS. 

The AWS choices include compute optimized 
instances, denoted with ‘c’ that have the lowest 
memory per core ratio rather than general (‘m’) or 
memory intensive (‘r’) instances. The first two 
AWS instances are powered with Intel Xeon 
Skylake (c5n) and Intel Ice Lake (c6i) processors 
using x86_64 architecture. The second of these 
options was introduced in the second half of 2021 
and targets performance, particularly for HPC and 
AI applications. The last AWS instance family 

(c6g) is powered by Graviton2 chips, which is a 
custom-made processor developed by AWS itself. 
It uses AArch64 architecture instead of the more 
traditional x86_64 architecture. The main 
advantages of AArch64 versus x86_64 are its 
lower power consumption and the more modern 
ISA. In general, processors using AArch64 
architecture are more energy efficient and 
cheaper, although their performance in double-
precision operations has traditionally lagged those 
of their x86_64 counterparts. AWS introduced 
Graviton2 at the end of 2019 targeting cost-
conscious users. Other manufacturers are 
presently developing their own AArch64 chips. 

The Azure IaaS use AMD EPYC processors. 
The first choice corresponds to the standard 
EPYC-2 instances offered by Azure, which scale 
up to 48 cores. The last 2 choices are HPC 
specific instances that use EPYC-2 and EPYC-3 
processors with 120 cores. The measurements for 
the latter 2 are individual points using all the 
available cores, whereas the other measurements 
utilize instances with varying number of cores.          

 

3.1 Southeast U.S. benchmark 
The first benchmarks measuring performance 

use the standard Southeast U.S. benchmark. This 
benchmark, which is well-documented in the own 
CMAQ website, uses a 100 by 80 by 35 grid and 
tracks 218 species. The benchmark covers a 
single day simulation in the summer of 2016.  

Fig. 1 shows the measurements of 
computational time versus number of cores for the 
Southeast U.S. benchmark in all the IaaS 
platforms listed in Table 1. Additionally, it also 
includes the results listed on the CMAQ website 
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with an on-premises EPA Dell cluster powered by 
Intel Xeon E5-2697A v4. This cluster is equipped 
with 16 cores per socket with a dual socket 
configuration for a total of 32 cores per node.  

A general observation from Fig. 1 is a 
relatively weak scalability as increasing the 
number of cores leads to diminishing returns. 
However, Fig. 1 also shows that the performance 
from different instance families exhibits a relatively 
wide variety and requires individual evaluation. 
Here, it also must be noted that performance can 
be measured per core or per instance, which can 
lead to slightly different conclusions depending on 
the ultimate target. For a relatively low number of 
cores, up to 32, a single node of the EPA cluster 
performs better -lower computational times- than 
AWS instances with the same number of cores 
even those using Intel Ice Lake processors. In 
order to achieve a similar performance to the Dell 
cluster, it is necessary to use the largest instances 
with up to 64 cores. In this case, the performance 
of the Graviton2 instances is still somewhat 
weaker than the EPA cluster node but the 
performance of the Ice Lake instance falls very 
close to that of the EPA cluster node. These 
results also reveal that upgrading from Intel 
Skylake (c5n) to Intel Ice Lake (c6i) increases 
performance by about 20%. However, the best 
performers for the CMAQ Southeast U.S. 
benchmark are the Azure instances powered with 
AMD EPYC processors. These processors not 
only best the others at low core count number, but 
they also exhibit better scalability as the core 
count increases. The HB120rs_v2 and 
HB120rs_v3 instances outperform all the other 
hardware and are the only ones able to lower the 
wall time below the 200 seconds range.   

 

3.2 WRF-CMAQ results 
The next results come from the WRF-CMAQ 

benchmark, which also cover the Southeastern 
area of the continental US. The results presented 
here use short wave feedback, which results in 
computational times roughly 5 times those of the 
CMAQ case. Fig. 4 shows wall times versus the 
number of cores. The maximum value for the latter 
is 64 as increasing this number to the hundred 
range results in subdomains too small and the 
WRF code stops when noticing it. Therefore, the 
results for the Azure HBv2 and HBv3 instances 
use only 53.3% of the available computational 
capacity. It is highly desirable to have a larger 
WRF-CMAQ benchmark in the future to evaluate 
the maximum computational capacity for large 
instances and clusters.     

The first deduction from Fig.4 is that the 
scalability is better than that of the CMAQ 
benchmark as the computational demand is 
greater. The evaluation of the performance of the 
different instances shows that the wall times with 
Graviton2 are very close to those of the EPA 
cluster for the same number of cores and using a 
c6g.16xlarge instance with 64 cores results in a 
computational time about half versus that of the 
EPA cluster node. The measurements with AWS 
c6i exhibit an even better performance and the 
computational time is further decreased. The 
results with AMD EPYC processors are also 
superior to the EPA cluster even for a low number 
of cores. For the highest number of cores used in 
the present tests (64), both Intel Ice lake and AMD 
EPYC results in computational times in the 800 
seconds range.    
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4. COST ANALYSIS 
A cost analysis is substantially more complex 

than a performance evaluation as the final cost 
depends on many factors with several of them 
being difficult to predict beforehand. A full cost 
analysis usually requires performing a total cost of 
ownership (TCO), which is complex and unique for 
each situation. As a minimum, it must include an 
evaluation of the costs associated with 
computational power, which usually accounts for a 
large fraction of the cost but not all of it, storage, 
outbound traffic, and any commercial fees. 
Furthermore, many of these categories have 
several tiers and conditions. The most typical 
example is storage with its very many options, and 
which can account from barely 1 or 2% to almost 
20% of the total cost depending on the end-user 
needs. Here, things are somewhat simplified, and 
the cost analysis focuses on the cost associated 
with computational power but excluding storage or 
outbound traffic. Cloud providers offer different 
modalities of prices for their instances. The 
following discussion considers two tiers for the 
cost associated with computational power: on-
demand or and spot prices. The former reflects the 
maximum cost associated with each instance 
without any discounts. Spot instances are offered 
by CSPs based on availability; their prices 
represent the maximum savings for each instance 
in that region, but this price varies among regions 
and can also fluctuate over time depending on 
demand. CSPs also offer other payment 
modalities such as reserved instances or private 
offers, which might involve a direct negotiation on 
the final price of instances and other resources. 
These prices are not considered here, and the on-
demand and spot prices represent the upper and 
lower computational cost limits.     

The cost estimates use the benchmark times 
discussed in the previous section. Fig. 5 shows 
the expenses incurred while performing the CMAQ 
and WRF-CMAQ benchmarks. These estimates 
are based on the largest instance for each family 
and takes into account how long it took to run the 
simulation along with the price for each resource. 
The prices for the latter reflect prices in the 
northern Virginia region for AWS and S. Central 
U.S. for Azure. Although spot prices are subject to 
change by the CSPs, we have not noticed much 
variability over the last few months, but potential 
users should be aware of this possibility. 

The first and obvious conclusion from Fig. 5 is 
that using spot instances saves a lot of money, 
which is the situation not only for CMAQ but for 
most other apps. Looking at the results for CMAQ 
on AWS IaaS, another deduction is that using the 

c6g family with AArch64 processors saves some 
money versus Intel processors even though the 
latter is a better performer. However, these 
savings are not a fixed quantity and depend on the 
case, intended use and whether the user is 
running the app on on-demand, spot or even 
reserved instances. The results for CMAQ also 
show that Azure is a more economical option, at 
least for the case studied here, because of the 
better performance translating into lower cost. The 
regular instance family, DA_v4, is the one with the 
lowest cost. The cost estimate for WRF-CMAQ 
shows a slightly different picture. In this situation, 
AWS and Azure costs fall more closely with AWS 
c6g instances having the lowest cost based on on-
demand prices but DA_v4 still being the most 
inexpensive for spot prices. These findings confirm 
that not only each user situation is unique, but that 
even different cases of interest to the same user 
might result in different conclusions from an 
economical viewpoint.  
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