Investigating Sources of Ammonia Uncertainty in Modeling the Salt Lake City PM_{2.5} Nonattainment Area

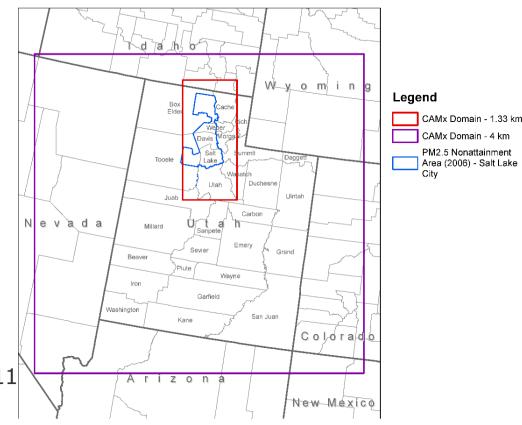
Marcus Trail and Chris Emery

Ramboll Air Sciences Group

State of Utah FY20 Science for Solutions Research Grant, UDEQ Contract 200046 October 28, 2020

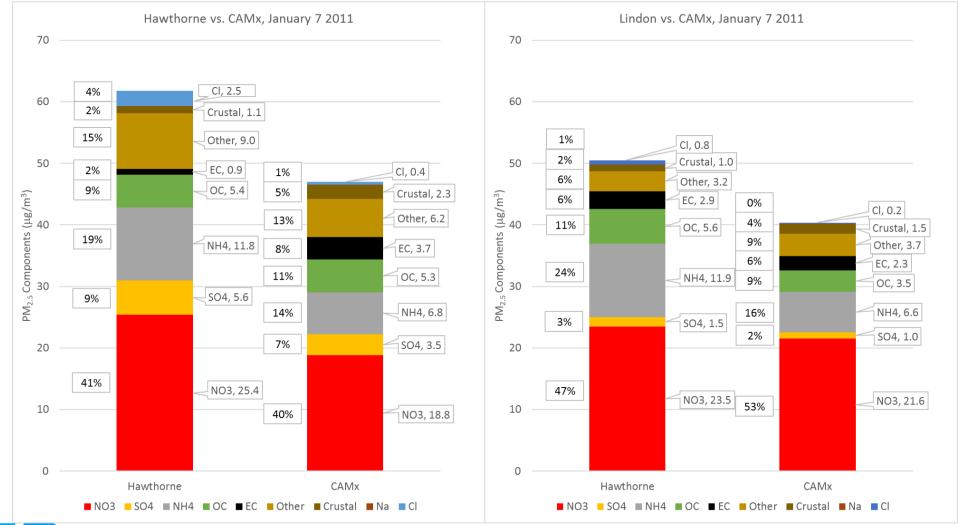
Acknowledgements

- Primary funding by the State of Utah FY20 Science for Solutions Research Grant, via UDEQ contract number 200046
- Co-funding by Marathon Petroleum
- We thank UDAQ staff for technical contributions, modeling datasets, and review
- We thank Dr. Randy Martin (USU) for information from the Winter 2019 Wasatch Front Ammonia and Chloride Observations (WaFACO) field study
- Contributing Ramboll colleagues:
 - Dr. Chris Lindhjem, Tejas Shah, Yesica Alvarez, Sai Sreedhar Varada, Dr. Greg Yarwood


Overview

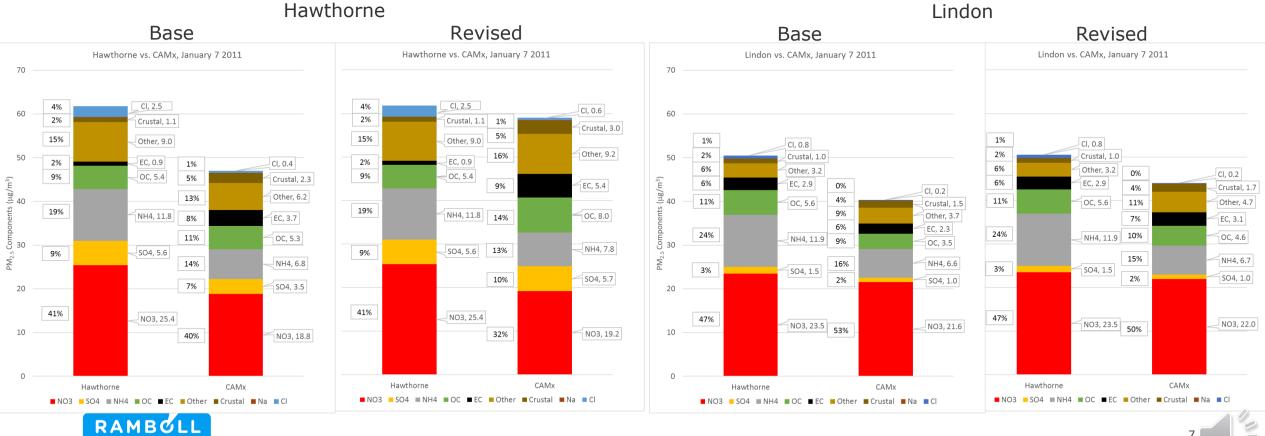
- Winter PCAP episodes can violate Federal 24-hour PM_{2.5} air quality standard
 - Buildup of ammonium nitrate (from NOx) and carbon (from smoke)
- UDAQ applies a photochemical model to assess/project PM_{2.5} levels
 - Model under predicts ammonium nitrate from lack of ammonia (NH₃)
 - Ad hoc blanket NH₃ emissions increase helps to alleviate under predictions
 - BUT: a major model uncertainty that may affect accuracy of projected $PM_{2.5}$
- We investigated causes for the modeled NH₃ shortfall
 - Benefitted from USU's 2019 WaFACO study
 - Reviewed emission inventories and measured concentration patterns
 - Investigated modeling uncertainties/deficiencies
 - Increased modeled NH₃ emissions from vehicles
 - Updated the model, re-evaluated modeling results and projected attainment-year PM_{2.5}

UDAQ Models and Datasets


- Photochemical Model CAMx v6.3
 - PCAP event during January 1-10, 2011
 - Models dispersion, chemistry, surface sink for:
 - Gas precursors and oxidants: NOx, VOC, SO₂, CO, NH₃, ozone
 - PM_{2.5} components: sulfate, nitrate, carbon, salts, dust, other
 - Project PM_{2.5} levels to 2019 attainment year
- Meteorology WRF v3 (Crossman and Foster, 2016)
 - Hourly/gridded winds, temperature, humidity, clouds, etc.
- Emissions SMOKE v3.6.5
 - Hourly/gridded/chemically speciated based on Triennial 2011 and 2014 annual county-level inventories
 - Projected to future years: activity growth, vehicle fleet turnover, stationary source controls

UDAQ PM_{2.5} Base Year Modeling Peak PM_{2.5} Day on January 7, 2011

Ramboll Investigative Modeling


- Physical Processes
 - Vertical Mixing Reduce to improve simulated PM_{2.5} and gas concentrations, decrease apparent NH₃ shortfall
 - Bi-directional NH₃ Surface Exchange A source of NH₃ shortfall?
 - Snow cover squelches NH₃ deposition and re-emission, and daytime snow melt enhances deposition
- Emission Processes
 - On-Road Gasoline Vehicle NH₃ Emissions Scale-up ~2x as supported by scientific literature
 - On-Road Gasoline Vehicle NH₃ Emissions in Cold Weather Scale-up ~40% as supported by scientific literature
 - NOx Emissions Does remaining NOx under prediction bias affect PM_{2.5}?
 - Scale up of non-point NOx by 20% results in lower ammonium nitrate highly non-linear system!
- Chemical Processes
 - Inorganic PM Chemistry Does alternative chemistry affect PM_{2.5}? No significant impacts
 - Halogen Chemistry Do more chlorides impact PM_{2.5}? Negligible effects on total PM_{2.5} but higher particulate chloride
 - Snow Albedo Increase to observed levels have small effects on PM_{2.5}
 - Cloud Chemistry How does cloud over prediction impact PM_{2.5}?
 - Little photolysis sensitivity and an unwanted reduction in aqueous sulfate production

Revised Base Year Modeling

- Improved agreement for total PM_{2.5} mass over all site-days; especially inorganic compounds
- Largest relative errors remain for species that have small to negligible PM_{2.5} contributions

PM_{2.5} Projections to 2019

- 2017 and 2019 (attainment year) emission inventory from UDAQ
- We applied the same model updates as described previously
- EPA's Software for Modeled Attainment Test (SMAT) projects observed 2016-2018 design values (DV) to 2019 based on modeled projections
- Our 2019 $PM_{2.5}$ DV projections are similar to UDAQ's; all sites attain 35 μ g/m³ standard

AIRS ID	Site Name, County	2016-2018 DVb	UDAQ 2019 DVf	Ramboll 2019 DVf
490030003	Brigham City, Box Elder	32.4	33.5	33.4
490110004	Bountiful, Davis	28.5	28.3	28.6
490353006	Hawthorne, Salt Lake	33.4	34.0	33.2
490353010	Rose Park, Salt Lake	34.9	35.4	35.0
490494001	Lindon, Utah	31.1	29.8	30.6
490495010	Spanish Fork, Utah	28.4	28.9	28.5
490570002	Ogden, Weber	30.2	30.7	30.2

Conclusions

- Simulated urban PM_{2.5} responded well to increased on-road gasoline vehicle NH₃ emissions
 - Scale-up by a factor of ~2 is supported by scientific literature
 - UDAQ NH₃ injection added ~65% to Salt Lake County emissions, while the NH₃ scale-up added ~40%
- Final model resulted in improved agreement with PM_{2.5} measurements in urban areas
 - NH₃ (based on 2019 WaFACO) and sulfate are simulated well
 - Nitrate remains under predicted by \sim 30% (but consistent with other western US PM_{2.5} modeling)
 - Carbon (mostly from smoke) is over predicted and smoke speciation may need adjustment
 - Continued $PM_{2.5}$ under predictions at rural sites where agricultural NH_3 sources are important
- Projected PM_{2.5} DVs using the updated model were similar to UDAQ's projections
 - No sites projected to exceed the standard

Conclusions

- Modeling indicates basin is in "NOx-disbenefit" condition during PCAP events, in agreement with recent field studies
 - NOx-saturated and oxidant-lean
 - NOx emission reductions can raise oxidant levels and secondary PM formation rates
 - Has implications for accurately projecting PM_{2.5} based on anticipated emission inventory changes
- Modeling indicates basin is near balance between NH₃-limited and nitrate-limited conditions, in agreement with recent field studies
 - BUT: PM_{2.5} response is affected by remaining model uncertainties and biases

Recommendations

- Model a more recent PM_{2.5} episode to analyze contemporary air quality and update projections
- Carry key updates identified in this project into any new PM_{2.5} modeling
- Investigate improvements for meteorological simulations of PCAP episodes
- Improve NH₃ emission inventory and spatial allocation for livestock and landfills
- Investigate causes for under estimates of NOx and chloride
- Improve speciation for wood smoke among organic/elemental carbon and other components
- Investigate the role of snow in modulating surface-atmosphere NH₃ exchange
- Investigate impacts of all updates on PM_{2.5} response to future projected and/or alternative emissions scenarios

