Adjoint Estimates of Benefit per Ton of $PM_{2.5}$ and Precursor Emission Reductions in the U.S.

SHUNLIU ZHAO, BURAK OZTANER, AMIR HAKAMI, PETROS VASILAKOS, ARMISTEAD G. RUSSELL, AMANDA PAPPIN, AND THE ADJOINT DEVELOPMENT TEAM

Benefit per Ton (BPT)

BPT is a term used to measure the dollar values of per-ton emission reductions (Fann et al., 2009)

BPTs depend on

- Emission locations (metropolitan, remote areas)
- Emission sources (transportation, industry, agriculture, etc.)
- Emission types (NH₃, SO₂, NO_x, etc.)

Goal: Estimates of BPTs of $PM_{2.5}$ primary and precursor emissions, including primary $PM_{2.5}$, NH_3 , NO_x , SO_2

How to calculate BPTs?

30 60

Benefits per Ton (1,000 \$/ton)

5

150 250

100

CMAQ adjoint model

CMAQ simulates the evolution of pollutants

CMAQ adjoint calculates the gradients to pollutant concentrations/emissions, backward in time (Hakami et al., 2007; Zhao et al., 2020)

- The forward and backward components of the adjoint
- Checkpoint pollutant concentrations due to nonlinearity with the forward
- Define an air quality metric or adjoint cost function of pollutant concentrations
- Derive the adjoint forcing which drives the adjoint model
- Run the backward and calculate BPTs

Adjoint cost function

Concentration response functions (CRFs), from air pollution to health and economic cost

- GEMM Global Exposure Mortality Model (Burnett et al., 2018)
- NHIS National Health Interview Surveys (Pope et al., 2018)
- Linear Linear in concentration (Krewski et al., 2009)

Computational setup and cost

EPA 36US3 Domain: 172 columns x 148 rows x 35 layers

Synchronization time step: 12 minutes

Computational expenses on Compute Canada's Graham cluster

- Number of CPUs: 64
- Averaged elapsed time per day for the forward: 30 minutes
- Storage: 176 GB/day; 63TB/yr

GEMM BPTs for PM_{2.5} primary emissions

GEMM BPTs for NH₃ emissions

Annual GEMM BPTs

Comparison with other models

(Industrial Economics, Incorporated, 2019)

	CMAQ BENMAP	AP2 DIRECT	AP3 DIRECT	INMAP BENMAP	EASIUR DIRECT	SA DIRECT	CMAQ ADJ
Cement Kilns	\$5,300	\$3,900	\$6,500	\$8,000	\$3,100	\$6,300	\$4,030
CPP Proposal	\$21,000	\$15,000	\$23,000	\$41,000	\$15,000	\$28,000	\$18,123
Pulp and Paper	\$2,600	\$1,400	\$2,400	\$3,500	\$1,600	\$2,800	\$1,797
Refineries	\$1,800	\$1,600	\$2,900	\$3,300	\$1,100	\$2,300	\$1,386
Tier 3	\$4,100	\$11,000	\$18,000	\$13,000	\$5,300	\$6,800	\$4,156

National benefits by policy (Millions): Different year (meteorology/emissions), different CRFs ...

Episode selection

Normalized mean error for BPTs

$$NME = \frac{\sum_{i=1}^{N} |BPT_{w,i} - BPT_{s,i}|}{\sum_{i=1}^{N} |BPT_{s,i}|}$$

Mean error for total benefits

Benefits: Episode versus full Season

Preliminary results: Impact of CRFs

BPTs of PM_{2.5} emissions

Preliminary results: Impact of grid resolutions

Concluding remarks and future work

- Seasonal adjoint simulations have been performed using the GEMM concentration response function to estimate benefits per ton of PM_{2.5} primary and precursor emissions.
- Benefits per ton vary in time (seasonal variations), location and emission types; some emissions matter more than others.
- Despite the differences in setups, adjoint BPTs compare well with other models.
- 2-week episodes chosen based on BPTs and benefits have been used to study the impact of CRFs.
 For the U.S., GEMM BPTs are in general larger than Linear BPTs.
- Preliminary study of the impact of grid resolution shows that BPTs are consistent between 12KMand 36KM-resolutions. Work with finer 4KM- and 1KM-resolutions is under way.
- Episode selection appears to be efficient and effective in studying the various scenarios with different CRFs and grid resolutions. Related uncertainties might need to be quantified.

Acknowledgement

- We would like to thank Neal Fann and Kirk Baker from US EPA for their help with health assessment and RFM comparisons
- We would also like to acknowledge support from Health Effects Institute and Health Canada