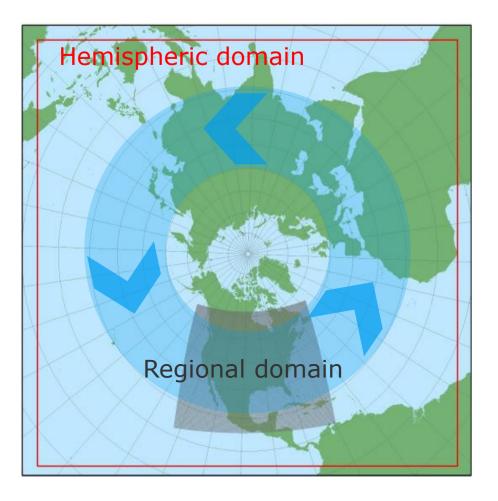

Enhancement and Testing of Hemispheric CAMx

Pradeepa Vennam, Chris Emery, Lynsey Parker, Jeremiah Johnson, Greg Yarwood (Ramboll)

Shantha Daniel (TCEQ)


CMAS Conference, October 2020

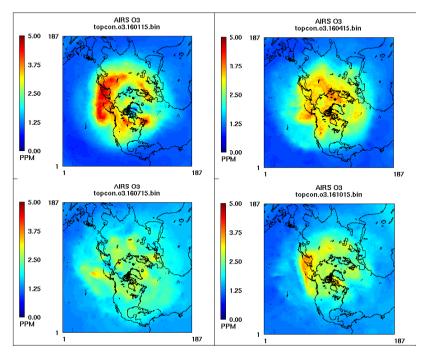
RAMBOLL Bright ideas. Sustainable change.

HEMISPHERIC CAMx (PHASE I)

- Improve the characterization of "background" ozone within regional (continental) air quality simulations
- Apportion ozone in hemispheric scale simulations
- Transfer hemispheric ozone source apportionment to regional domains via boundary concentrations (BCs)

HEMISPHERIC CAMx (PHASE II)

- Evaluate and develop use of satellite data to derive lateral and top boundary conditions
- Test effects of improved vertical resolution and use of CAMx "cloud-in-grid" (CiG) convective sub-model
- Comprehensive model performance for entire 2016 year vs. GEOS-Chem and H-CMAQ



SATELLITE O₃ FOR CAMX TOP BC

- NASA-AIRS V6 product includes ozone, CO and methane
 - Good for stratospheric concentrations
 - Poor in the lower and mid troposphere
- Use to characterize spatial and temporal variations of ozone at the top of the model
- **AIRS2CAMxTC**: new tool generates top BC from daily global AIRS ozone data
 - Easily adaptable to AIRS-OMI when available

AIRS V6/L3 ozone fields at 50 hPa (mb) pressure altitude

RAMBOLL

Daily H-CAMx ozone top concentrations derived from AIRS ozone retrievals

MULTI-YEAR INITIAL/BOUNDARY CLIMATOLOGY

- Initializing from simple profile assumptions require excessive model spin-up to achieve chemically equilibrated atmosphere
- AIRS has little tropospheric temporal and zonal variability (monthly climatological a-priori dominates), limited chemical species
- Developed a library of monthly-averaged, spatially-varying IC/BC for all CAMx species from 2016 GEOS-Chem
- Can be used to represent a recent global climatology within a reasonable interval (arguably ±5 years) from 2016
- Shortens model spin-up times from IC (~1 month to 1 season)

HEMISPHERIC WRF SIMULATIONS

• Key WRF sensitivity tests:

1) Vertical resolution:

- Increase in mid-troposphere through lower stratosphere
- Improve winds for long-range transport and stratospheric intrusion?
- 9 additional layers (from 44 to 53)

2) Convective submodel:

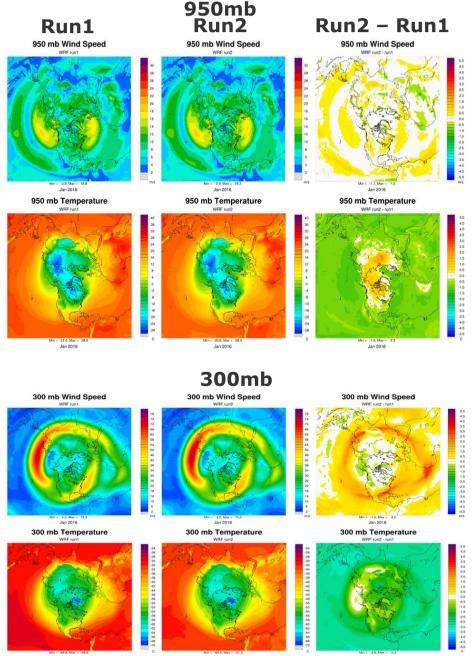
- Use Multi-scale Kain-Fritsch (MSKF) cumulus option that supports CAMx cloud-in-grid (CiG) convective submodel

WRF runs

Scenario	Description
Run0	EPA's WRF output
Run1	Replicate EPA's setup but parallelize over 5.5-day sections (speed up WRF)
Run2	53 layers
Run3	MSKF cumulus

WRF physics options used in Run0 through Run3

WRF Physics	Run0/1/2	Run3		
Surface Layer Physics	P-X	MM5		
PBL	ACM2	YSU		
Sub-Grid Convection	K-F	MSKF		

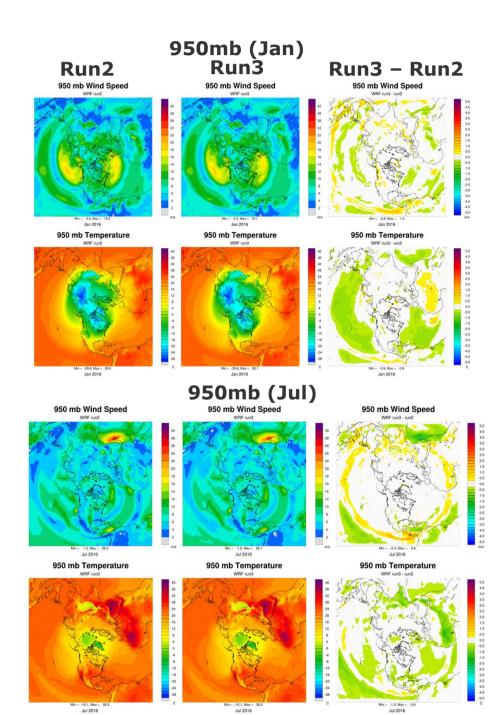


VERTICAL RESOLUTION SENSITIVITY (RUN 2)

- Near-surface fields are cooler and drier, whereas high latitude areas are warmer
- Near-surface winds are slightly stronger in equatorial and mid-latitude regions
- Better resolution of the jet stream's vertical structure and hence higher speeds

RAMBOLL

• Improved resolution of temperature profile near the tropopause, leading to lower temperatures



CUMULUS SENSITIVITY (RUN 3)

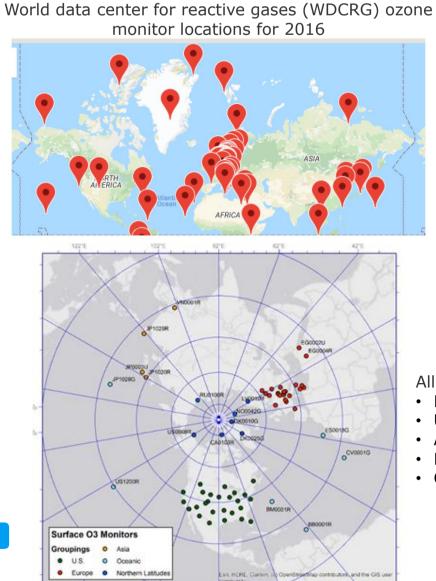
- Slightly stronger winds in equatorial convergence zone in both seasons, slightly weaker mid-latitude winds in winter
- Cooler winter temperatures over the subtropical oceans and warmer over Saharan Africa
- Cooler summer subtropical temperatures globally (especially Africa and India)
 - Higher humidity in same areas and in both seasons
- Little impact in mid/high latitudes and at tropopause

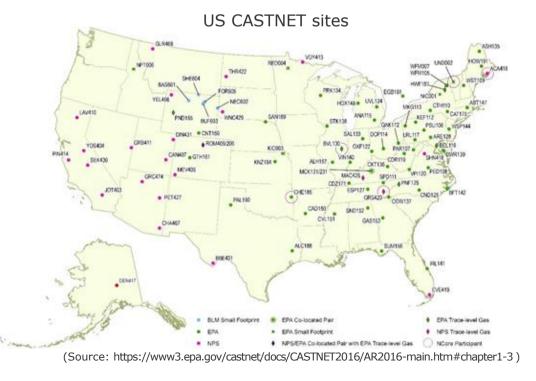
RAMBOLL

- Low-altitude/low-latitude sensitivity to PBL and cumulus mixing

H-CAMx SIMULATIONS

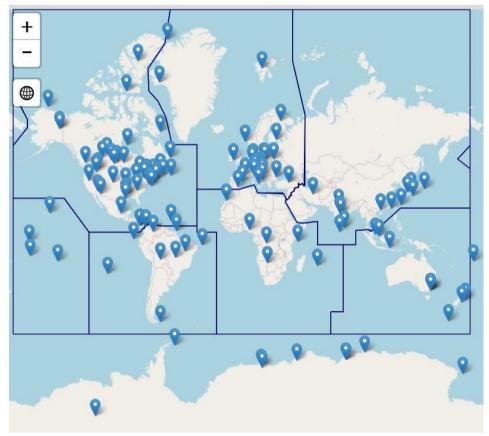
Meteorology, Emissions, IC/BC/TC


Scenario	Description
Run0	EPA WRF and most emissions (Mathur et al., 2017) Oceanic & wind blown dust, day specific GEOS-Chem IC/BC/TC V1 H-CAMx stratospheric ozone parameterization
Run1	WRF replication, monthly IC/BC, daily satellite TC, updated natural emissions V2 H-CAMx stratospheric ozone parameterization to reduce ozone bias above 10km
Run2	WRF with 53 layers, re-extracted monthly IC/BCs
Run3	WRF with MKSF/YSU/MM5 schemes CAMx cloud-in-grid convective mixing scheme

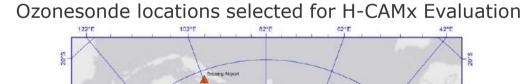

H-CAMx Run	Run Duration	Run Dates (Total # Days)			
Run0	4 days, 11 hr, 46 mins	12/22/2015 - 12/30/2016 (375 days)			
Run1	5 days, 3 hr, 46 mins	10/01/2015 - 12/31/2016 (458 days)			
Run2	5 days, 23 hrs 21 mins	10/01/2015 - 12/31/2016 (458 days)			
Run3	6 days, 9 hr, 15 mins	10/01/2015 - 12/31/2016 (458 days)			

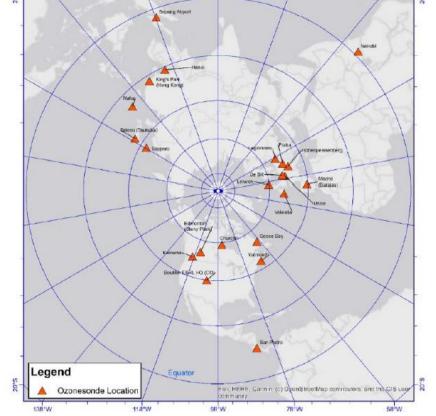
Parallelization: 9 MPI x 6 OMP

GLOBAL SURFACE MEASUREMENT DATA



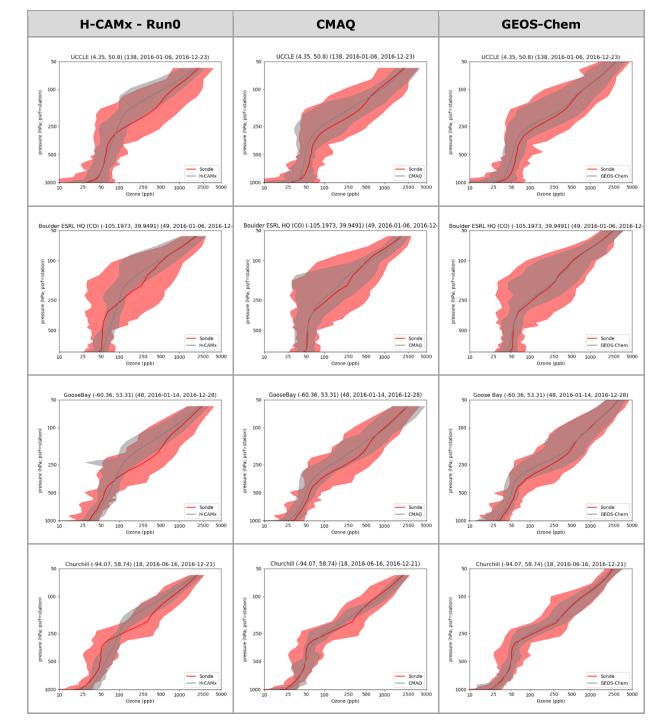
All surface monitors for 2016:


- Europe (26 sites)
- US (24 sites)
- Asia (4 sites)
- Northern Latitudes (7 sites)
- Oceanic (6 sites)


OZONESONDE MEASUREMENTS

Global ozonesonde launch sites in 2016

Source: https://woudc.org/data/explore.php



INTER-MODEL PERFORMANCE COMPARISON

- GEOS-Chem qualitatively best replicates stratospheric ozone, negative bias in the troposphere
- H-CMAQ is similar to GEOS-Chem but consistently more negatively biased
 - Occasional ozone gaps around the tropopause at low-latitudes
- H-CAMx has negative stratospheric bias and positive tropospheric bias
- All models exhibit narrower minimum-tomaximum ranges than the observations

• US/CASTNET:

- Models exhibit little NMB and a range of 10-20% NME
- GEOS-Chem and H-CMAQ exhibit the lowest bias
- H-CAMx has consistent positive bias, large deviations from the other models at few sites

• Europe:

- Performance trends similar to US
- GEOS-Chem negatively biased
- H-CMAQ and H-CAMx bias is rather good
- H-CAMx has consistent positive bias while H-CMAQ has a slight negative bias

INTER-MODEL PERFORMANCE COMPARISON

Site-averaged annual bias (NMB, %), gross error (NME, %) and correlation coefficient (R) over five global
monitoring groups for each model.

Monitor Group	GEOS- Chem NMB	H-CAMx NMB	H-CMAQ NMB	GEOS- Chem NME	H-CAMX NME	H-CMAQ NME	GEOS- Chem R	H-CAMx R	H-CMAQ R
US	2%	15%	4%	16%	20%	18%	0.65	0.67	0.59
Europe	-14%	6%	-5%	20%	17%	17%	0.76	0.74	0.73
Asia	-8%	16%	13%	21%	25%	27%	0.78	0.74	0.76
Oceanic	-19%	9%	19%	21%	18%	23%	0.71	0.72	0.62
Polar	-20%	-3%	-25%	24%	15%	30%	0.68	0.43	0.22

Color coded according to whether **they meet (green)** or **exceed (orange)** ozone statistical performance criteria recommended by Emery et al. (2016) for regional photochemical modeling (NMB $\leq \pm 15\%$; NME $\leq 25\%$, R > 0.50).

- 15 metrics listed for each model (3 statistics over 5 monitoring regions)
- Performance is generally good among most models/regions (esp. US and Europe)
 - GEOS-Chem tends toward negative bias
 - H-CAMx Run0 tends toward positive bias
 - H-CMAQ statistics are mixed

H-CAMx SENSITIVITY RESULTS

Site-averaged annual bias (NMB, %), gross error (NME, %) and correlation coefficient (R) over five global						
monitoring groups for each H-CAMx run.						

Monitor Group	Run1 NMB	Run2 NMB	Run3 NMB	Run1 NME	Run2 NME	Run3 NME	Run1 R	Run2 R	Run3 R
US	16%	20%	21%	21%	24%	25%	0.64	0.64	0.63
Europe	6%	8%	12%	17%	17%	19%	0.74	0.71	0.69
Asia	17%	20%	25%	26%	28%	31%	0.74	0.74	0.73
Oceanic	4%	7%	4%	21%	23%	22%	0.64	0.61	0.59
Polar	-4%	-3%	-2%	14%	13%	14%	0.54	0.59	0.59

Color coded according to whether **they meet (green)** or **exceed (orange)** ozone statistical performance criteria recommended by Emery et al. (2016) for regional photochemical modeling (NMB $\leq \pm 15\%$; NME $\leq 25\%$, R > 0.50).

- Higher ozone in all sensitivity cases relative to Run0: upward shifts in NMB and NME over all regions
- Poor Run0 correlation in the Polar group is improved substantially in all sensitivity cases
- Bias and error performance over US and Asia degrade to outside benchmark criteria
- High bias among the Asia group is driven by higher ozone at Hanoi, Vietnam (an apparent emission issue discussed with EPA)

CONCLUDING REMARKS

- Developed daily H-CAMx ozone TCs from AIRS satellite data at 50 mb
- Monthly spatially-varying IC/BCs provide best balance between flexibility and representativeness, allow for a shortened spin-up period
- Modified layer structure influenced resolution of the boundary layer, and temperature and wind profiles at jet stream altitudes, minor effect on tropospheric ozone
- Implementing cumulus convection had little impact meteorologically and increased tropospheric ozone
- Comparison to GEOS-Chem and H-CMAQ indicates:
 - H-CAMx tends to under predict stratospheric ozone profiles, over predict tropospheric profiles
 - Stratospheric scheme adjustment improves stratospheric ozone, slightly exacerbates tropospheric ozone
 - GEOS-Chem is best overall performer globally
 - H-CMAQ tends to slightly under predict tropospheric profiles, has most performance variability of the three models

