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Background

Di et al. (2017) New England Journal of Medicine

• Associations between fine particulate 
matter (PM2.5) exposure and adverse 
health effects have been reported, with 4.2 
million deaths attributed in 2015

• Due to the limited coverage of monitoring, 
exposure assignments in health studies are 
increasingly based on modeled fields that 
incorporate available monitoring

• Continuous fields of PM2.5 concentrations 
have facilitated epidemiologic studies with 
national coverage (e.g., Medicare cohort)
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https://www.nejm.org/doi/10.1056/NEJMoa1702747
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(17)30505-6/fulltext


Evaluation of PM2.5 Fields

• Use of modeled PM2.5 fields in policy-relevant health 
studies has raised questions about the reliability and 
consistency of exposure assignments

• Cross validation statistics can be excellent (R2 > 0.80), 
but the relationship between such statistics and 
outcomes in specific health studies is unclear

• Moreover, studies have reported degradation in 
performance with distance to the nearest monitor 
(Figure, bottom)

• More work is needed to examine the influence of 
modeling approaches on outcomes in specific studies

Jin et al. (2019)
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https://iopscience.iop.org/article/10.1088/1748-9326/ab2dcb


Objectives

• We use nine PM2.5 concentration models (i.e., exposure models) 
that span a wide range of methods to assess

i. PM2.5 concentrations in 2011

ii. Potential changes in PM2.5 concentrations between 2011 and 2028 
due to modeled emission changes

iii. PM2.5 exposure for the U.S. population and four racial/ethnic groups

The use of multiple models provides insights on current exposure modeling methods 
as well as a thorough characterization of PM2.5 concentrations and exposure
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Models
Case Name Method Description Reference

1. CMAQ Geophysical process model (v5.0.2) US EPA (2015); 
Kelly et al. (2019a)

2. CAMx Geophysical process model (v6.3.2) US EPA (2017)

3. VNA Interpolation of PM2.5 observations Abt (2012);
Kelly et al. (2019b)

4. eVNA Interpolation of obs w/ fusion of CTM results Abt (2012); Kelly et al. (2019b)

5. Downscaler Bayesian statistical regression of CTM 
predictions and observations

Berrocal et al. (2010); 
US EPA (2020)

6. VD2019 CTM scaling of satellite AOD to surface PM2.5

with geographically-wt. regression of residuals
van Donkelaar et al. (2019), 
modified per V4.NA.02.MAPLE

7. DI2016 Neural network model Di et al. (2016)

8. HU2017 Random forest model Hu et al. (2017)

9. DI2019 Ensemble of random forest, gradient boosting, 
and neural network learners

Di et al. (2019)
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https://www.epa.gov/hesc/rsig-related-downloadable-data-files
https://www.sciencedirect.com/science/article/pii/S1352231019305023
https://www3.epa.gov/ttn/scram/reports/2028_Regional_Haze_Modeling-TSD.pdf
https://www3.epa.gov/scram001/guidance/guide/MATS-2-5-1_manual.pdf
https://www.sciencedirect.com/science/article/pii/S259016211930022X
https://www3.epa.gov/scram001/guidance/guide/MATS-2-5-1_manual.pdf
https://www.sciencedirect.com/science/article/pii/S259016211930022X
https://link.springer.com/article/10.1007/s13253-009-0004-z
https://www.epa.gov/sites/production/files/2020-01/documents/final_policy_assessment_for_the_review_of_the_pm_naaqs_01-2020.pdf
https://pubs.acs.org/doi/10.1021/acs.est.8b06392
https://pubs.acs.org/doi/abs/10.1021/acs.est.5b06121
https://pubs.acs.org/doi/abs/10.1021/acs.est.7b01210
https://www.sciencedirect.com/science/article/pii/S0160412019300650


Study Methods

• 2011 PM2.5 concentrations are averaged to the 
annual period on a common to 12-km grid

• Exposure is estimated with population-weighted 
average concentrations using 2010 Census data*

• Projection from 2011 to 2028 is based on relative 
response factors from previous CAMx modeling:

𝑅𝑅𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠 =
𝐶2028,𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝐶2011,𝑠𝑝𝑒𝑐𝑖𝑒𝑠
(1)

𝑅𝑅𝐹𝑇𝑜𝑡,𝑃𝑀2.5 =
σ 𝐶𝑂𝑏𝑠,𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑅𝑅𝐹𝑠𝑝𝑒𝑐𝑖𝑒𝑠

σ 𝐶𝑂𝑏𝑠,𝑠𝑝𝑒𝑐𝑖𝑒𝑠
(2)

𝑃𝑀2.5𝑀𝑜𝑑,2028 = 𝑅𝑅𝐹𝑇𝑜𝑡,𝑃𝑀2.5𝑃𝑀2.5𝑀𝑜𝑑,2011 (3)

Pollutant Emission Change 

SO2 -63%

NOx -50%

VOC -20%

PM2.5 -4%

Emission Change: 2011 to 2028
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*Based on census block data aggregated to 1- or 12-km grid, https://doi.org/10.7927/H40Z716C

https://doi.org/10.7927/H40Z716C


2011 PM2.5 Concentrations
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• Broad agreement in 
PM2.5 spatial variation 
among models

• CMAQ and CAMx have 
the lowest national 
average, but high PM2.5

in cities

• The relatively smooth 
fields (VNA and 
Downscaler) have the 
highest national average



Variability Among Non-CTM Models
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Los Angeles (12-km)
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Los Angeles (1-km)
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DPM2.5 Concentrations (2028 – 2011)
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• Large (>3 mg m-3) decreases 
in PM2.5 in parts of the east 
with reduced SO2 emissions

• Broad agreement in DPM2.5

spatial variation among 
models

• Differences in spatial 
variations follow 2011 fields 
due to use of same RRFs in 
all cases



National Population-Weighted PM2.5

2011 PM2.5 DPM2.5 (2028 – 2011)
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Exposure Gap
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• The exposure gap* between the highest- and lowest-exposure group is shown 
with labels for the highest-exposed group when DPM2.5 > 0.5 mg m-3

• Modeled emission reductions from 2011 to 2028 reduce the absolute 
exposure gap

*Based on average concentration field across the seven non-CTM models



Standard Deviation in Exposure Gap Among Models
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• The standard deviation in exposure gap from the seven non-CTM models is shown 
with a label for the number of models predicting the same most-exposed group

• Standard deviations are generally <0.5 mg m-3 and models generally agree on the 
most exposed group



Conclusions
• PM2.5 predictions for 2011 are in broad agreement among the non-CTM 

models at regional and national scales, although differences in intra-urban 
spatial variations are evident

• Agreement among models is closer for population-weighted PM2.5 than 
uniformly weighted PM2.5 due to relatively large differences in sparsely 
populated and monitored western regions

• Reductions in PM2.5 concentrations were predicted broadly over the eastern 
U.S. and parts of the west for modeled emission changes between 2011 and 
2028; DPM2.5 was not very sensitive to the selection of 2011 PM2.5 field

• The absolute exposure gap across four racial/ethnic groups is predicted to 
decrease based on modeled emission changes between 2011 and 2028
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