Evaluating Fire Emissions Inventories with Bayesian Statistics

Samantha Faulstich¹, Xia Sun², A. Grant Schissler³ Matthew J. Strickland⁴, Heather A. Holmes⁵,

- 1. Atmospheric Sciences Program, Department of Physics, University of Nevada, Reno
- 2. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder
 - 3. Department of Mathematics & Statistics, University of Nevada, Reno
 - 4. School of Community Health Sciences, University of Nevada, Reno
 - 5. Department of Chemical Engineering, University of Utah

This work is supported in part by the National Institutes of Health under award number R01ES029528

Overarching Research Goal

- NIH project looking to determine the health effects of wildfire and prescribed burn smoke on humans in the Reno, Nevada area.
- Focus on plume-specific aerosol mixtures in wildfire smoke from different wildfires with different fuel types

Objectives

• Determine the inventory that can best provide multi-year, daily smoke exposure estimates for individual smoke plumes in Reno.

Project Requirements

- Temporal domain: 2007-2020
 - Consistent methodology
 - Daily smoke exposure estimates
- Modeling Domain
 - Western United States including Oregon, California, Nevada, and parts of Idaho, Utah, Washington, and Arizona

Fire Emissions Inventory Summary

	MFLEI	FINN	GFED 4s	WFEIS
Resolution	10 km x 10 km Daily	1 km x 1 km Daily	0.25° x 0.25° Monthly	1 km x 1 km Daily
Available to	2015	2019	2016 (beta up to 2020)	2018 - 2020
Advantages	Updated fuel parameterizations	Near real time data	Incorporation of small fires	Combined burn area product using MODIS and MTBS
Disadvantages	Data latency	Relies heavily on MODIS data	Large error in small fire product	High fuel consumption

Direct Comparison

Burned Area Comparison

Emissions Comparison

2013 Total Emissions

FINN

GFED

MFLEI

WFIES

8

Rim Fire Daily Emissions

Day of Year

Rim Fire

Day of Year

Correlation Between Inventories

Bayesian Analysis

Model Description

- Single level model
- PM2.5 emissions per day of the Rim Fire
- MCMC sampling used to obtain information from the posterior distribution
- $y \sim normal(\alpha + \beta y_{n-1}, \sigma)$
 - ο α **~**N(0, 10)
 - \circ $\beta \sim N(0, 2.5)$
 - $\circ \sigma \sim exponential(rate = 1)$

- Autocorrelation at day 1.
- Posterior summary statistics show a slope of 0.49 with a standard deviation of 0.23

WFEIS

- Autocorrelation at day 1.
- Posterior summary statistics show a slope of 0.47 with a standard deviation of 0.16

- No autocorrelation.
- Posterior summary statistics show a slope of 0.29 with a standard deviation of 0.22

- Autocorrelation at day 2.
- Posterior summary statistics show a slope of 0.72 with a standard deviation of 0.15

Conclusions

- Based on my direct comparison and Bayesian analysis, WFEIS is most suitable for the project.
- Direct comparison shows FINN likely underestimates and MFLEI likely overestimates
- WFEIS has lowest posterior predictive standard deviation of the "reasonable" fire emissions inventories
 - High fuel consumption will be addressed in future updates

Future Work

- Use Bayesian analysis to evaluate measurement error for each model
- Use cross validation techniques to determine influential points in the distribution

References

French, Nancy H. F. et al. *Earth Interactions* 18, no. 16 (September 2014): 1–26.

Stein, A. F. et al. *Bulletin of the American Meteorological Society* 96, no. 12 (December 2015): 2059–77.

- Urbanski, Shawn P. et al. *Earth System Science Data* 10, no. 4 (December 10, 2018): 2241–74.
- Werf, Guido R. van der, et al. *Earth System Science Data* 9, no. 2 (September 12, 2017): 697–720.
- Muth, Chelsea, et al. "User-Friendly Bayesian Regression Modeling: A Tutorial with Rstanarm and Shinystan." *The Quantitative Methods for Psychology*, vol. 14, no. 2, Jan. 2018, pp. 99–119.