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Overarching Research Goal
● NIH project looking to determine the 

health effects of wildfire and prescribed 
burn smoke on humans in the Reno, 
Nevada area. 

● Focus on plume-specific aerosol 
mixtures in wildfire smoke from different 
wildfires with different fuel types
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Objectives
● Determine the inventory that can 

best provide multi-year, daily 
smoke exposure estimates for 
individual smoke plumes in Reno. 
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Project Requirements
● Temporal domain: 2007-2020

○ Consistent methodology
○ Daily smoke exposure estimates

● Modeling Domain
○ Western United States including 

Oregon, California, Nevada, and parts 
of Idaho, Utah, Washington, and 
Arizona
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MFLEI FINN GFED 4s WFEIS

Resolution 10 km x 10 km
Daily

1 km x 1 km
Daily

0.25° x 0.25°
Monthly

1 km x 1 km
Daily

Available to 2015 2019 2016 (beta up to 
2020)

2018 - 2020

Advantages Updated fuel 
parameterizations

Near real time 
data

Incorporation of 
small fires

Combined burn 
area product using 
MODIS and MTBS

Disadvantages Data latency Relies heavily on 
MODIS data

Large error in 
small fire product

High fuel 
consumption

Fire Emissions Inventory Summary 
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Direct Comparison



Burned Area Comparison
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Emissions Comparison
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Rim Fire Daily Emissions
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Correlation Between Inventories
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Bayesian Analysis 



Model Description
● Single level model
● PM2.5 emissions per day of the Rim Fire 
● MCMC sampling used to obtain information from the posterior distribution 
●  y ~ normal(𝛼 + 𝛽𝑦n-1, 𝝈)

○ 𝛼 ~N(0, 10)
○ 𝛽 ~ N(0, 2.5)
○ 𝝈 ~ exponential(rate = 1)
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MFLEI 
Posterior Predictive Check

● Autocorrelation at day 1. 
● Posterior summary statistics show a slope of 0.49 with a standard deviation of 0.23
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WFEIS
Posterior Predictive Check

● Autocorrelation at day 1. 
● Posterior summary statistics show a slope of 0.47 with a standard deviation of 0.16
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GFED

● No autocorrelation. 
● Posterior summary statistics show a slope of 0.29 with a standard deviation of 0.22

Posterior Predictive Check
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FINN
Posterior Predictive Check

● Autocorrelation at day 2. 
● Posterior summary statistics show a slope of 0.72 with a standard deviation of 0.15
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Conclusions
● Based on my direct comparison and Bayesian analysis, WFEIS is most 

suitable for the project.
● Direct comparison shows FINN likely underestimates and MFLEI likely 

overestimates
● WFEIS has lowest posterior predictive standard deviation of the “reasonable” 

fire emissions inventories
○ High fuel consumption will be addressed in future updates 
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Future Work
● Use Bayesian analysis to evaluate measurement error for each model 
● Use cross validation techniques to determine influential points in the 

distribution
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