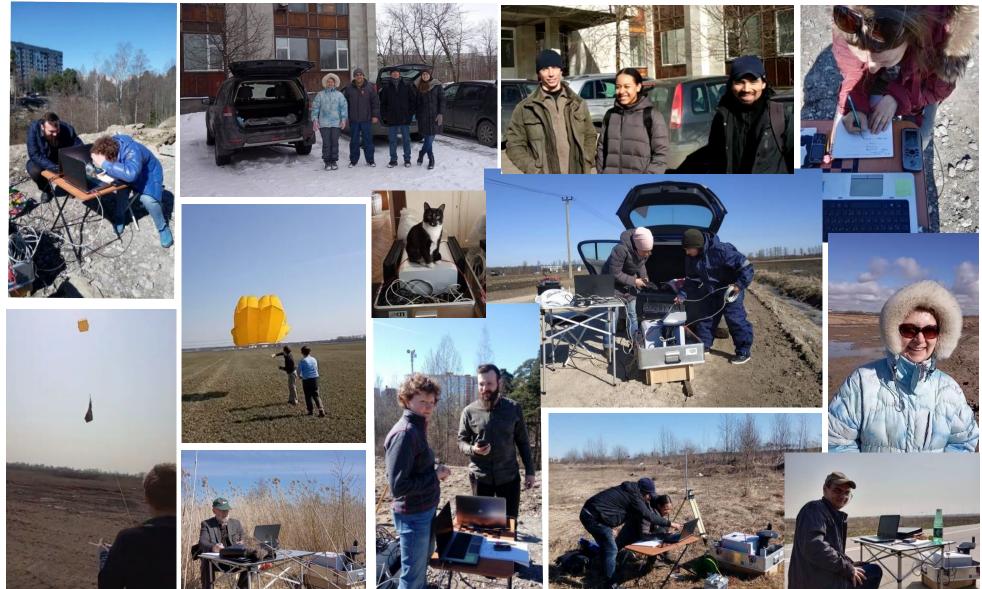


Emission Monitoring Mobile Experiment (EMME): an overview and results of the St. Petersburg megacity campaigns of 2019-2020 (Russia)

Maria Makarova*,


Frank Hase**, Dmitry Ionov*, Carlos Alberti**, Stefani Foka*,Thomas Blumenstock**, Vladimir Kostsov*, Thorsten Warneke***, Yana Virolainen*, Anatoly Poberovskiy*

* Saint Petersburg State University (Russia) ** Karlsruhe Institute of Technology (Germany) *** Bremen University (Germany)

The goal of EMME Making a lot of photos/hours of video ;-)

The goal of EMME

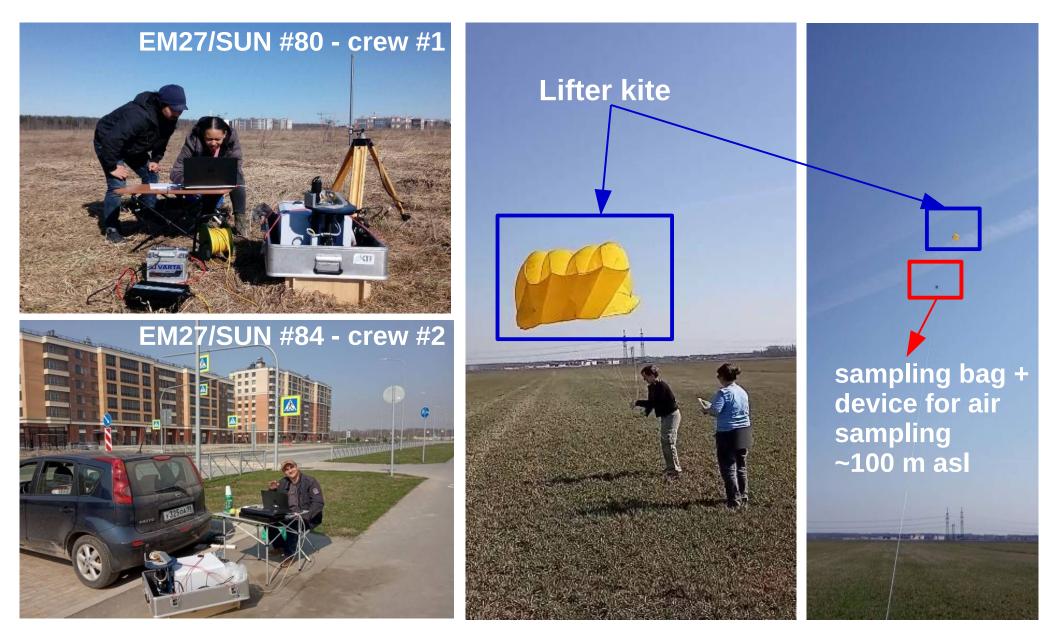
► to estimate the emission of CO_2 , CH_4 , CO and NO_2 for St. Petersburg – a megacity with a population of ~ 5.4 million (7.5 million - unoficial info)

EMME city campaign was carried out:

- in March-April of 2019, 11 days of field measurements;
- in March-early May 2020, 6 days (3 days out of quarantine and 3 days during the COVID-19 quarantine).

Core instruments

- two portable Bruker EM27/SUN FTIR spectrometers (KIT&UoB, COCCON network) – CO2, CH4 and CO TC measurements;
- OceanOptics HR4000Vis spectrometer mobile DOAS observations of NO2 tropospheric vertical column;
- GNSS recievers geographic location info;
- 3 vehicles for the transportation of the scientific equipment.

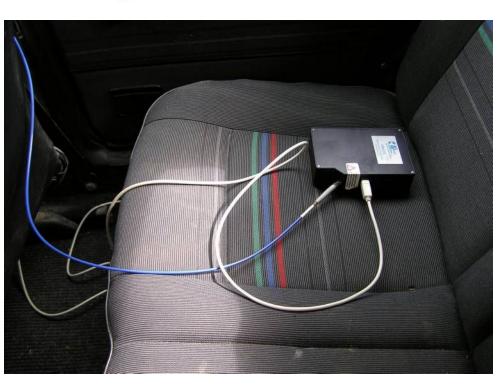

Auxillary instruments

- sample bags+sampling devices for in-situ analysis of CO2, CH4, CO, N2O, H2O, NO2, NO and O3 concentrations (Los Gatos Research and ThermoScientific gas analyzers);
- lifter kite for elevated air sampling;
- Reinhardt meteostation p, T, wind speed&direction, etc;

4 car batteries, 2 invertors, 2 electric blankets, 3 laptops, etc.

Concept of EMME (1)

mobile monitoring – the combined approach


Concept of EMME (2)

mobile monitoring – real-time detection of NO2 city plume

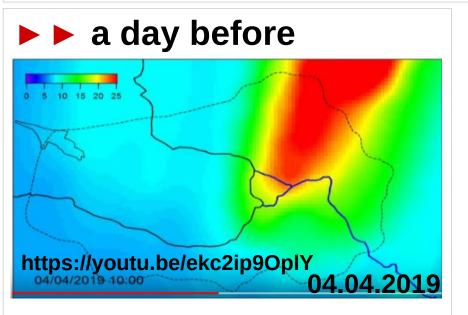
<u>OceanOptics HR4000Vis grating spectrometers</u>: zenith-sky scattered solar radiation measurements.

<u>Processing software</u>: WinDOAS <u>Output</u>: NO2 tropospheric vertical column

Info provided by D.V.Ionov

Concept of EMME (3)

the combined approach based on:


Hase et al.: Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin, Atmos. Meas. Tech., 8, 3059-3068, *doi:10.5194/amt-8-3059-2015*, 2015.

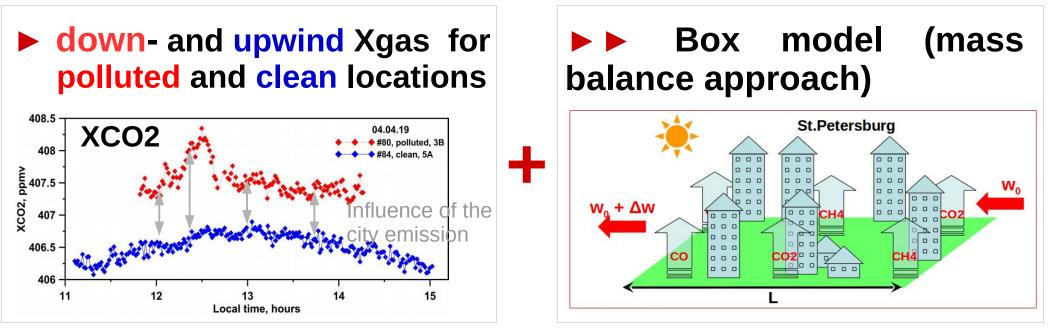
lonov et al.: 2015: Quantification of NOx emission from St.Petersburg (Russia) using mobile DOAS measurements around entire city. Int. J. Remote Sensing, 36, 9, 2486–2502, *https://doi.org/10.1080/01431161.2015.1042123*, 2015.

Concept of EMME (4)

preparatory stage (autumn 2018 – winter 2019)

The set of 21 points for possible up- and downwind positioning of two EM27/SUNs has been checked during the preparatory stage of EMME. Observational points are mostly located near the St.Petersburg ring roadway.

The position of St. Petersburg NO2 plume was forecasted using the HYSPLIT* dispersion model.


The forecast made it possible to identify preliminary up- and downwind locations of measurement points for two mobile crews carrying Bruker EM27/SUN FTIR spectrometers. *See references

mobile DOAS monitoring – real-time detection of NO2 city plume

Locations of #84 (point 5A) and #80 (3B) FTIR EM27/SUN spectrometers

Area fluxes of the city center

Area fluxes of the city center (2019), t/(km2·yr):

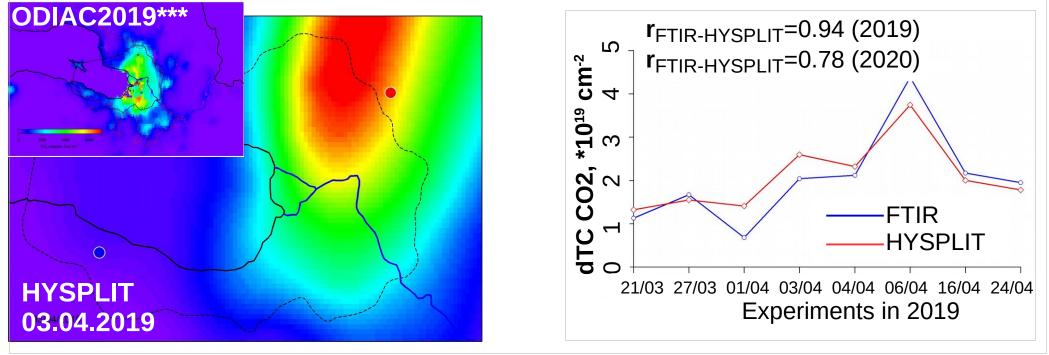
 CO2
 89 000 ± 28 000
 ~31000

 CH4
 135 ± 68
 ~25**

 CO
 251 ± 104
 ~410**

 NOx
 66 ± 28
 ~69**

******2017 official inventory for Saint Petersburg


Results of EMME 2019 have been submitted to AMT (discussion phase): https://www.atmos-meas-tech-discuss.net/amt-2020-87 *

**See references

Total CO2 emission of St.Petersburg

Evaluation of total CO2 emission of the city by coupling the EMME observations in 2019-2020 and the HYSPLIT* simulations

ODIAC*** database was used as a priori info on the CO2 emissions

 Total CO2 emission of St.Petersburg, kt/yr: 2019 75800±5400 ~30000** 2020 68400±7100 (~10% lower than in 2019)

******2017 official inventory for Saint Petersburg

***See references

Summary

More than 300 photos/ ~1.5 hours of video ;-)

Next steps:

- further comprehensive analysis of the observational data acquired during EMME 2019&2020 campaigns;

- detailed study of the influence of the COVID-19 quarantine on CO2, CO and NOx emissions from St.Petersburg;

- evaluation of the total CH4, CO and NOx emissions of St.Petersburg using the results of EMME 2019&2020;

- preparation of an aircraft experiment for studying the 2-D crossection of the city plume.

References:

*Draxler, R. R. and Hess, G.D.: An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Aust. Meteor. Mag., 47, 295-308, 1998.

**Serebritsky, I.A., (Ed.): The Report on Environmental Conditions in St. Petersburg for 2017,https://www.gov.spb.ru/static/writable/ckeditor/uploads/2018/06/29/ Doklad_EKOLOGIA2018.pdf, 2018 (in Russian).

***Oda, T. and Maksyutov, S. (2015), ODIAC Fossil Fuel CO₂ Emissions Dataset (Version name: ODIAC2019), Center for Global Environmental Research, National Institute for Environmental Studies, doi:10.17595/20170411.001.18).

Funding:

This activity is supported by the VERIFY project 776810 (HORIZON2020). SPbU team is partly funded by the RFBR project 18-05-00011.

Acknowlegements:

Ancillary experimental data were acquired using the scientific equipment of **"Geomodel" research center of SPbU**.

The authors gratefully acknowledge the NOAA ARL for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.

Thank you for your attention.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776810