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Climate Change Impacts on Air Quality: Pathways
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Figure adapted from Jacob & Winner, 2009

• Meteorology influences PM2.5 air quality in many ways:

• PM2.5, in turn, affects visibility and human health



Climate Variability vs Climate Change for PM2.5
• PM2.5  variability+change illustrated by two GFDL ensemble members H1 and H3:

• Internal Variability (noise) can confound Climate Change (signal) 3

NATURAL CLIMATE VARIABILITY = 
fluctuation around a steady mean

CLIMATE CHANGE (SIGNAL) = 
long term change of mean≠

+NATURAL FORCING = 
caused by solar activity, 
volcanoes

INTERNAL VARIABILITY (NOISE) =
internally arising due to chaotic 
nature of climate system

Area used in 
averaging PM2.5
for the timeseries



Past Studies of Climate Change on US PM2.5

• synoptic meteorology key driver of PM2.5 and O3

• inconsistency in climate impact on air quality: 

• Complex PM2.5 components with different climate response

• Averaged limited number of future years

• Used single realization of one climate model
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[O3] results [PM2.5] results

∆ Direction Consistently +ve Inconsistent sign

∆ Magnitude 1-10 ppb (polluted regions) Between -1 and +1 µgm-3

But some studies have:

Notable findings of past studies:

Crustal 
Elements

Bulk Organic 
Carbon

Secondary Inorganic 
Ions

Anthropogenic 
(Industrial) Tracers

Si Ca Al OC EC NH4
+ SO4

2- NO3
- Fe Zn Pb

from Kundu & Stone, 2015 study 

Fiore et al, 2015



Study Objectives and Method
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3-ensemble, coarse Global Chemistry-Climate Model 
simulations for 2006-2100

Select 8 GCM years representing high/median PM2.5

Dynamical downscaling of meteorology (WRF 12km)

Air quality downscaling (CMAQ 12km) with inline 
biogenic, lightning, dust emissions

Construct fine scale probability distribution of mean 
annual PM2.5

Study associated probabilistic impacts on visibility & 
human health

Objective - Characterize the role of climate variability and change on US PM2.5 distribution in fine 
scale, using a novel approach:



Year Selection for Downscaling based on GFDL Output EOF Analysis

We select years from GFDL chemistry-climate global model that represent upper quartile 
and median PM2.5 levels in each US region
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Year Selection for Downscaling
Identify upper-quartile and median annual 
PM2.5 years in different CONUS regions

EOF analysis of GFDL
Identify US regions that vary PM2.5
coherently

Histograms of summer daily mean PM2.5 of 3 ensemble members of GFDL 
CM3 to (i)  better characterize internal variability, and

(ii) show the shift in PM2.5 distribution due to climate changeDaily mean PM2.5 from GFDL-CM3
Method of Year Selection

Courtesy: G. Milly & A. Fiore

Present years: 2006/07 H1,  2010/11 H5,  
2014/15 H1,  2018/19 H3

Future years:   2054/55 H3,  2054/55 H5,  
2058/59 H1,  2058/59 H5
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WRF/CMAQ Simulations

Scenario Time Meteorology GFDL IC/BCs Anthrop. 
Emissions

# Realizations

RCP8.5m_2005e_PRES 2006-2020 2005 RCP8.5_WMGG RCP8.5_WMGG 2016 NEI 4

RCP8.5m_2005e_FUT 2050-2065 2050 RCP8.5_WMGG RCP8.5_WMGG 2016 NEI 4
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• Land Use/Cover remains constant for all WRF/CMAQ simulations

• GFDL RCP8.5_WMGG fixes aerosol, ozone precursor emissions at 2005 level

• CMAQ simulations use 2016NEI emissions to reflect current emissions

RCP8.5m_2005e_FUT - RCP8.5m_2005e_PRES = effect of only climate change on future PM2.5



WRF Physics Options

• 8 selected GFDL years (RCP8.5 met. and 2005 emissions) downscaled in WRF:
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12km 
domain

36km 
domain

Parameter Physics options used in WRF simulation

mp_physics = 6 WSM 6-class graupel scheme microphysics

ra_lw_physics = 4 RRTMG radiative transfer scheme for 
longwave radiation

ra_sw_physics = 4 RRTMG radiative transfer scheme for 
shortwave radiation

sf_surface_physics = 2 Unified Noah land-surface model

cu_physics = 1 Kain-Fritsch (new Eta) scheme for cumulus 
parameterization

num_land_cat = 40 40 land categories of NLCD2011 used

num_soil_cat = 16 16 categories of soil data

Domains used in SimulationsPhysics Options used in WRFv3.9.1.1 simulations

* Spectral nudging is applied to moisture for better precipitation results (Spero et al, 2018)



Comparing GFDL & WRF T2 [K] Statistics: July 2058 (ens. H1) Example

• General temperature patterns of GFDL simulations are represented in WRF
• WRF simulation adds fine scale details

T2 July 2058(H1) Maximum T2 July 2058(H1) Minimum T2 July 2058(H1) Mean
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Comparing GFDL & WRF Monthly Total Precipitation [mm]: July 2058 (ens. H1) Example

GFDL 2058 H1 WRF 12km

• General precipitation pattern of GFDL are represented well in WRF*
• WRF simulation adds finer scale details in precipitation

* Spectral nudging applied to moisture in WRF simulations for better precipitation results (Spero et al, 2018)
* July-December 6-month spinup used for surface temperature IC for better Inland lake model results



Current Progress: CMAQ test-run configuration
• CMAQ test-run of Jan-Feb of a selected GFDL year 2014/15 H1 conducted

• Meteorology-sensitive emissions used inline in CMAQ:
o sea spray aerosol emission
o windblown dust emissions 
o lightning NOx emissions
o biogenic emissions

• 12US2 domain (12km) used in CMAQ test-run:
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Comparing GFDL & CMAQ Feb 2014 (H1) Monthly Mean of Total PM2.5

GFDL 2014 H1 CMAQ 12km

• CMAQ test-run looks different from GFDL-CM3:
o they are different in horizontal grid size
o they use different emissions
o other technical issues also being investigated for the difference
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1)            Histogram of GFDL mean annual PM2.5

• Optimum distribution parameters minimize (∆1
2 + ∆2

2 + ∆3
2 + ∆4

2) which is the least sum of squares of 
distribution percentile differences

• Impact of climate change estimated by Monte Carlo sampling from present and future distributions

5)            Optimized lognormal fit to CMAQ

2)            Lognormal fit to GFDL histogram

3) Selected GFDL year mean annual value

4)            Corresponding CMAQ mean

Constructing Fine Scale PM2.5 Probability Distribution based on Global Model Ensembles

• Illustration of a single grid cell mean annual PM2.5 for a specific period (e.g. present decade)
∆1 ∆2                     ∆3 ∆4



Expected Outcomes & Summary

• To quantify climate change impacts on US PM2.5 in the 2050s, considering variability, we:
o use large ensemble global model simulation to characterize variability

o downscale meteorology and air quality in selected years to fine resolution (12km)

o set anthropogenic emissions to present day levels

o allow dust, sea spray, lightning and biogenic emissions to evolve with meteorology 

o map fine scale probability distributions of PM2.5 in individual grid cells

• Our study will yield an improved air quality projection method for individual US subregions, 
in context of future climate change and variability.

• We will also map the associated impacts of climate change and variability on human health 
and visibility.
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Thank You for listening!

Thanks to my

Also, thanks to
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Questions?
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