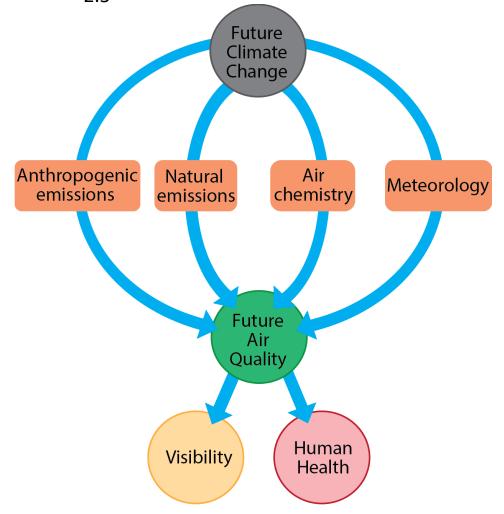
Studying the influence of climate change and variability on mid- $21^{\rm st}$ century US $PM_{2.5}$ by dynamical downscaling

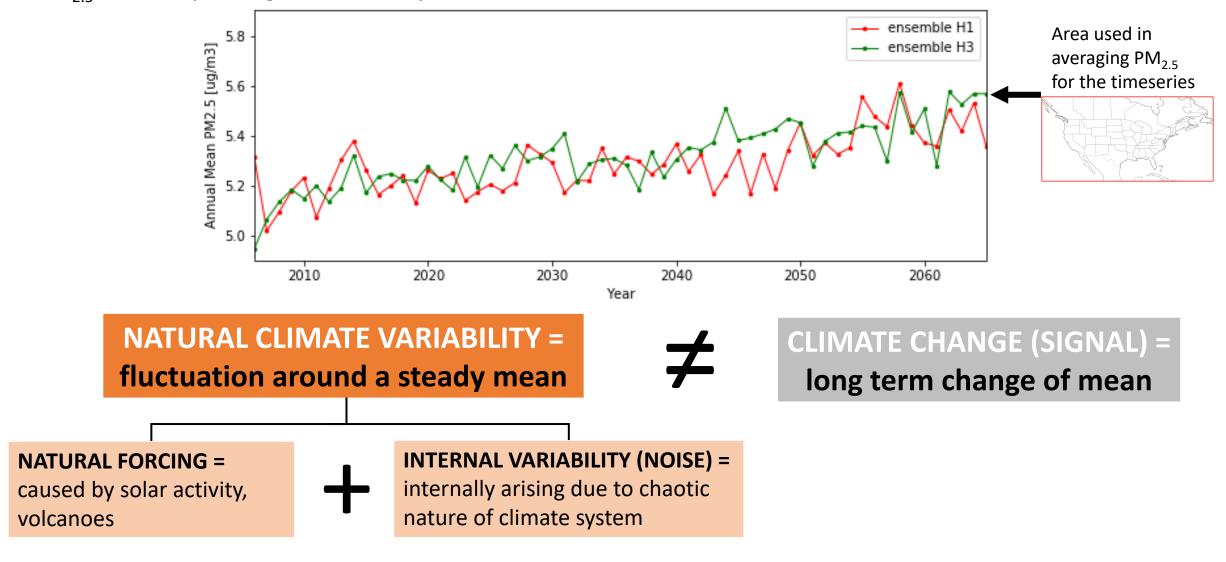
Surendra B. Kunwar¹, Jared H. Bowden², George Milly³, Michael Previdi³, Arlene M. Fiore³, J. Jason West¹


¹Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill;

²Department of Applied Ecology, North Carolina State University;

³Lamont-Doherty Earth Observatory, Columbia University

Climate Change Impacts on Air Quality: Pathways


Meteorology influences PM_{2,5} air quality in many ways:

• PM_{2.5}, in turn, affects visibility and human health

Climate Variability vs Climate Change for PM_{2.5}

• PM_{2.5} variability+change illustrated by two GFDL ensemble members H1 and H3:

Internal Variability (noise) can confound Climate Change (signal)

Past Studies of Climate Change on US PM_{2.5}

- Notable findings of past studies: synoptic meteorology key driver of PM_{2.5} and O₃
 - inconsistency in climate impact on air quality:

	[O ₃] results	[PM _{2.5}] results		
Δ Direction	Consistently +ve	Inconsistent sign		
Δ Magnitude	1-10 ppb (polluted regions)	Between -1 and +1 μgm ⁻³		

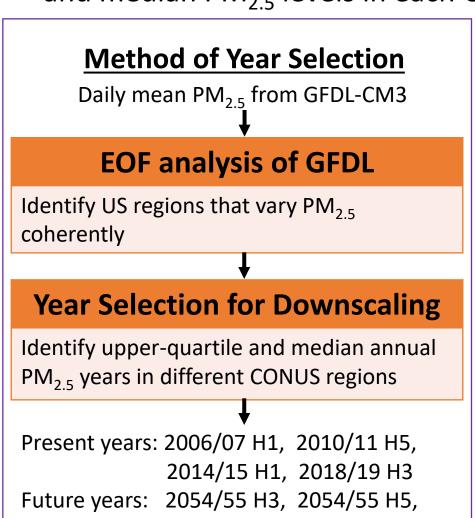
Fiore et al, 2015

Complex PM_{2.5} components with different climate response

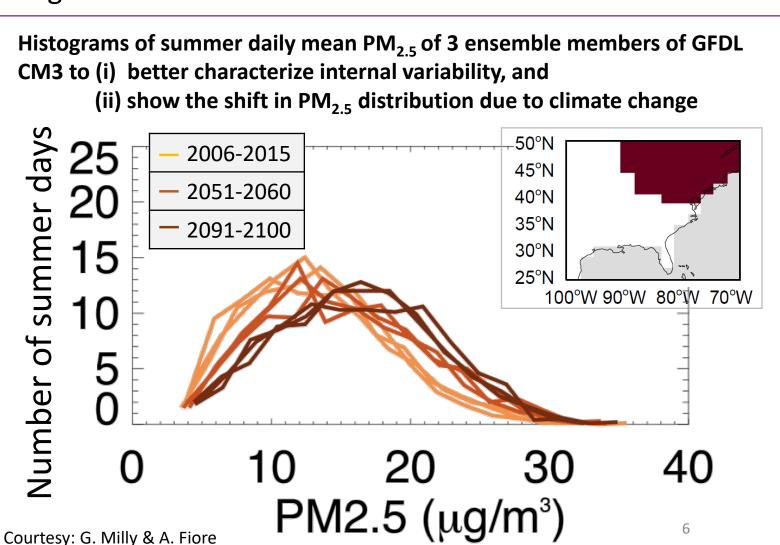
Crustal Elemen			Bulk O Carbor	_	Secondary Inorganic Anthropolic (Industria		. •			
Si	Ca	Al	OC	EC	NH ₄ ⁺	SO ₄ ²⁻	NO ₃ -	Fe	Zn	Pb

from Kundu & Stone, 2015 study

- But some studies have: Averaged limited number of future years
 - Used single realization of one climate model


Study Objectives and Method

Objective - Characterize the role of climate variability and change on US $PM_{2.5}$ distribution in fine scale, using a novel approach:


3-ensemble, coarse Global Chemistry-Climate Model simulations for 2006-2100 Select 8 GCM years representing high/median PM_{2.5} Dynamical downscaling of meteorology (WRF 12km) Air quality downscaling (CMAQ 12km) with inline biogenic, lightning, dust emissions Construct fine scale probability distribution of mean annual PM_{2.5} Study associated probabilistic impacts on visibility & human health

Year Selection for Downscaling based on GFDL Output EOF Analysis

We select years from GFDL chemistry-climate global model that represent upper quartile and median PM_{2.5} levels in each US region

2058/59 H1, 2058/59 H5

WRF/CMAQ Simulations

Scenario	Time	Meteorology	GFDL IC/BCs	Anthrop. Emissions	# Realizations
RCP8.5m_2005e_PRES	2006-2020	2005 RCP8.5_WMGG	RCP8.5_WMGG	2016 NEI	4
RCP8.5m_2005e_FUT	2050-2065	2050 RCP8.5_WMGG	RCP8.5_WMGG	2016 NEI	4

RCP8.5m_2005e_FUT - RCP8.5m_2005e_PRES = effect of only climate change on future PM_{2.5}

- Land Use/Cover remains constant for all WRF/CMAQ simulations
- GFDL RCP8.5_WMGG fixes aerosol, ozone precursor emissions at 2005 level
- CMAQ simulations use 2016NEI emissions to reflect current emissions

WRF Physics Options

• 8 selected GFDL years (RCP8.5 met. and 2005 emissions) downscaled in WRF:

Physics Options used in WRFv3.9.1.1 simulations

Parameter	Physics options used in WRF simulation		
mp_physics = 6	WSM 6-class graupel scheme microphysics		
ra_lw_physics = 4	RRTMG radiative transfer scheme for longwave radiation		
ra_sw_physics = 4	RRTMG radiative transfer scheme for shortwave radiation		
sf_surface_physics = 2	Unified Noah land-surface model		
cu_physics = 1	Kain-Fritsch (new Eta) scheme for cumulus parameterization		
num_land_cat = 40	40 land categories of NLCD2011 used		
num_soil_cat = 16	16 categories of soil data		

Domains used in Simulations 50°N 45°N 30°N 25°N 15°N

105°W

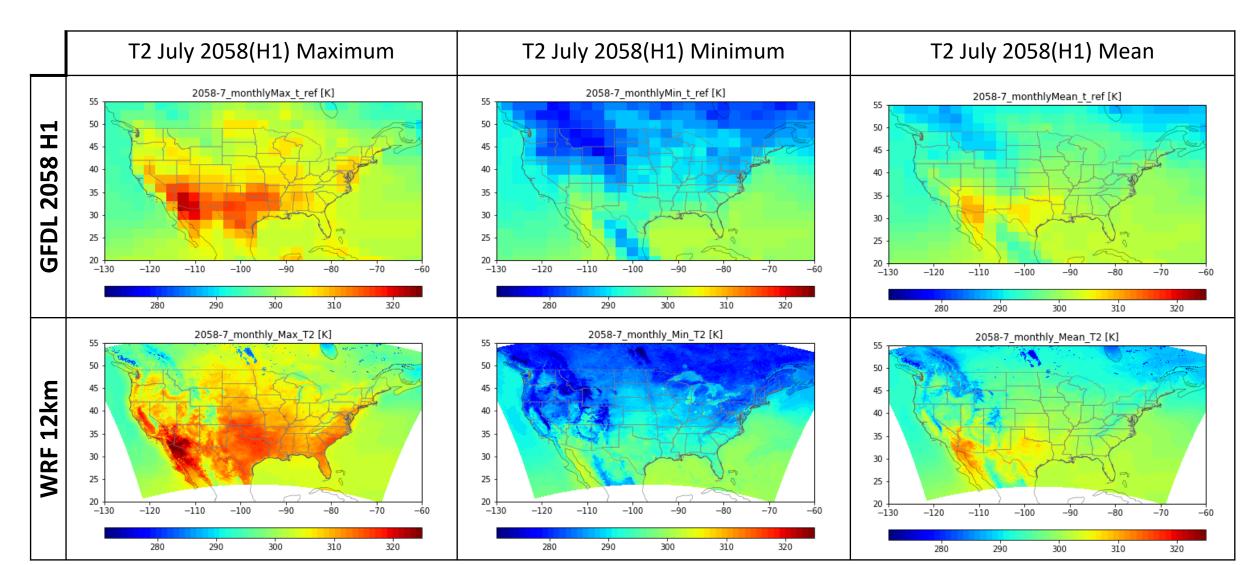
120°W

12km

domain

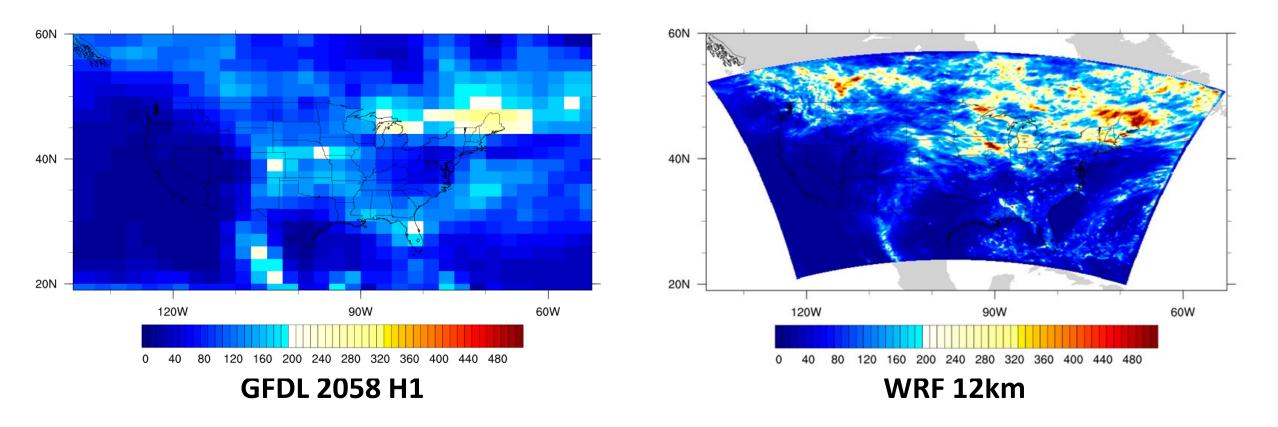
90°W

36km


domain

75°W

^{*} Spectral nudging is applied to moisture for better precipitation results (Spero et al, 2018)


Comparing GFDL & WRF T2 [K] Statistics: July 2058 (ens. H1) Example

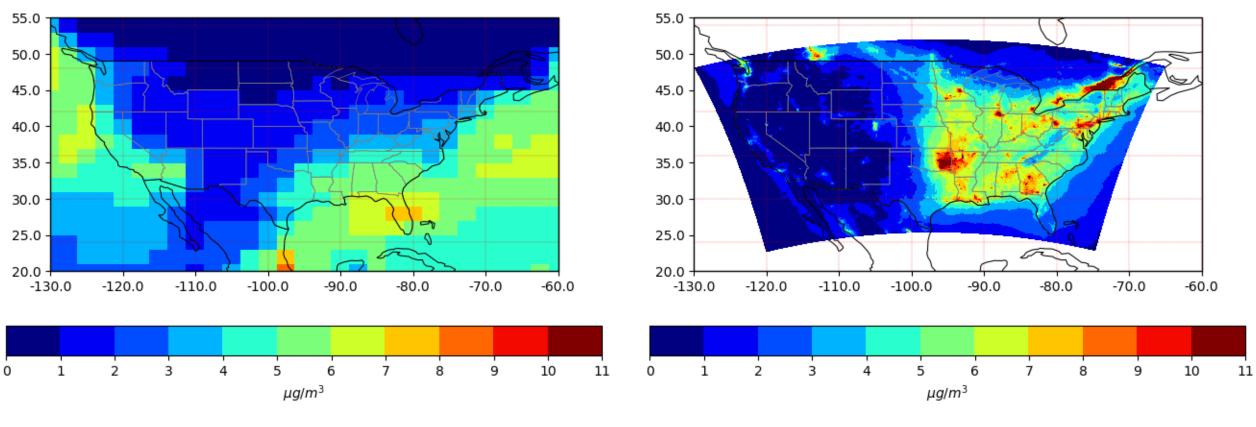
- General temperature patterns of GFDL simulations are represented in WRF
- WRF simulation adds fine scale details

Comparing GFDL & WRF Monthly Total Precipitation [mm]: July 2058 (ens. H1) Example

- General precipitation pattern of GFDL are represented well in WRF*
- WRF simulation adds finer scale details in precipitation

^{*} Spectral nudging applied to moisture in WRF simulations for better precipitation results (Spero et al, 2018)

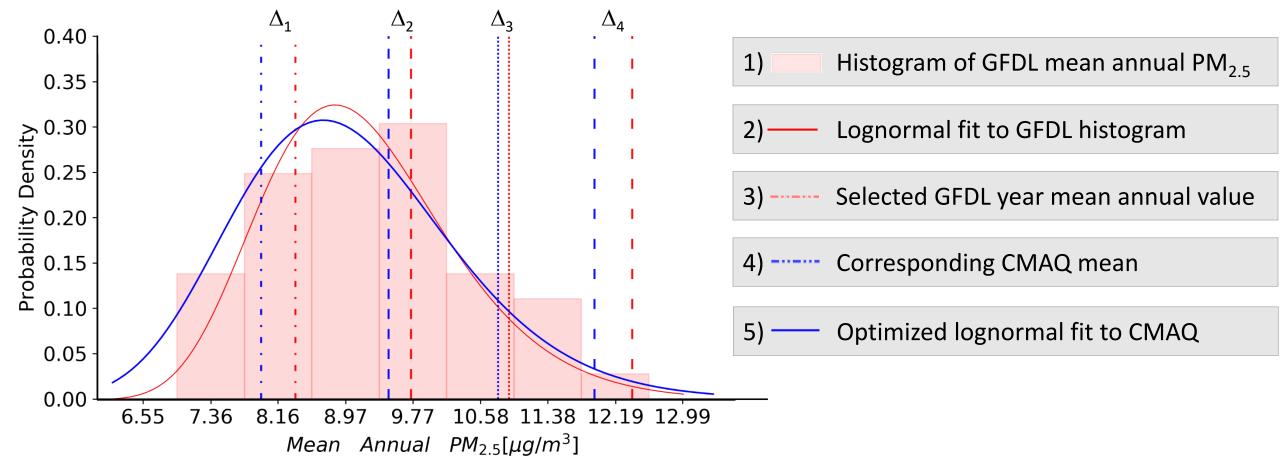
^{*} July-December 6-month spinup used for surface temperature IC for better Inland lake model results


Current Progress: CMAQ test-run configuration

- CMAQ test-run of Jan-Feb of a selected GFDL year 2014/15 H1 conducted
- Meteorology-sensitive emissions used inline in CMAQ:
 - sea spray aerosol emission
 - windblown dust emissions
 - lightning NO_x emissions
 - biogenic emissions
- 12US2 domain (12km) used in CMAQ test-run:

Comparing GFDL & CMAQ Feb 2014 (H1) Monthly Mean of Total PM_{2.5}

- CMAQ test-run looks different from GFDL-CM3:
 - o they are different in horizontal grid size
 - they use different emissions
 - o other technical issues also being investigated for the difference



GFDL 2014 H1

CMAQ 12km

Constructing Fine Scale PM_{2.5} Probability Distribution based on Global Model Ensembles

• Illustration of a single grid cell mean annual PM_{2.5} for a specific period (e.g. present decade)

- Optimum distribution parameters minimize $({\Delta_1}^2 + {\Delta_2}^2 + {\Delta_3}^2 + {\Delta_4}^2)$ which is the least sum of squares of distribution percentile differences
- Impact of climate change estimated by Monte Carlo sampling from present and future distributions

Expected Outcomes & Summary

- To quantify climate change impacts on US $PM_{2.5}$ in the 2050s, considering variability, we:
 - o use large ensemble global model simulation to characterize variability
 - downscale meteorology and air quality in selected years to fine resolution (12km)
 - set anthropogenic emissions to present day levels
 - o allow dust, sea spray, lightning and biogenic emissions to evolve with meteorology
 - o map fine scale probability distributions of PM_{2.5} in individual grid cells
- Our study will yield an improved air quality projection method for individual US subregions,
 in context of future climate change and variability.
- We will also map the associated impacts of climate change and variability on human health and visibility.

References

- Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. *Atmospheric environment*, 43(1), 51-63. Deser, C., R. Knutti, S. Solomon, and A. S. Phillips (2012a), Communication of the role of natural variability in future North American climate, *Nature Clim. Change*, 2(12), 888-888.
- Fiore, A. M., Naik, V., & Leibensperger, E. M. (2015). Air quality and climate connections. *Journal of the Air & Waste Management Association*, 65(6), 645-685.
- Nolte, C. G., Spero, T. L., Bowden, J. H., Mallard, M. S., & Dolwick, P. D. (2018). The potential effects of climate change on air quality across the conterminous US at 2030 under three Representative Concentration Pathways. *Atmospheric chemistry and physics*, 18(20), 15471-15489.
- Kundu, S., & Stone, E. A. (2014). Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. *Environmental Science: Processes & Impacts*, 16(6), 1360-1370.
- Dawson, J. P., Bloomer, B. J., Winner, D. A., & Weaver, C. P. (2014). Understanding the meteorological drivers of US particulate matter concentrations in a changing climate. *Bulletin of the American Meteorological Society*, 95(4), 521-532.
- Garcia-Menendez, F., Monier, E., & Selin, N. E. (2017). The role of natural variability in projections of climate change impacts on US ozone pollution. *Geophysical Research Letters*, 44(6), 2911-2921.

Thank You for listening!

Thanks to my

Advisor

Mentors

Collaborators

PhD Committee

Also, thanks to

CHAQ Lab

ESE Dept.

Graduate School UNC Chapel Hill

XSEDE program

TACC

UNC Research Computing

EPA (STAR grant #RD83587801)

Questions?