The air quality trade-offs of wildfire and prescribed burning smoke

Sadia Afrin¹, Fernando Garcia Menendez¹, Shannon Koplitz², Kirk Baker² ¹North Carolina State University, ²U.S. Environmental Protection Agency

19th Annual CMAS Conference

October 26-30, 2020, Virtual

NC STATE UNIVERSITY

Background

Source: https://www.charlottestories.com/dozens-wildfires-now-spreading-across-north-carolina/

- In November 2016, severe wildfires occurred in the Southern Appalachian Mountains, likely due to severe drought conditions¹.
- In North Carolina, 26 major wildfires
 burned more than 62,000 acres².
- Drought conditions in this region are also projected to become more frequent in future years³.
- The degree to which prescribed fire may reduce the air quality impacts of wildfire is poorly understood.

- 1. Konrad et al. (2018), The Southeastern Drought and Wildfires of 2016
- 2. NCFS (2017), Biennial report
- 3. Mitchell et al. (2014), Future climate and fire interactions in the SE US

Objective

Investigate the air quality trade-offs between wildfire and prescribed fire smoke by simulating historical and hypothetical scenarios using BlueSky Pipeline and WRF-CMAQ.

2016 Western North Carolina wildfires

https://www.google.com/imgres?imgurl=https%3A%2F%2Fwildfiretoday.com%2Fwp-content%2Fuploads%2F2016%2F11%2FFiresInSouth_11-14-2016.jpg&imgrefurl=https%3A%2F%2Fwildfiretoday.com%2F2016%2F14%2Fmaps-of-five-wildfires-in-georgia-and-north-carolina%2F&tbnid=2nz1MBrq1pniPM&vet=12ahUKEwj7r9SKrN7oAhXyWDABHdCXBjgQMygAegUIARCjAQ.i&docid=dP6jXpFvo9DkHM&w=900&h=452&q=NC%202016%20wildfire%20map&ved=2ahUKEwj7r9SKrN7oAhXyWDABHdCXBjgQMygAegUIARCjAQ.i%docid=dP6jXpFvo9DkHM&w=900&h=452&q=NC%202016%2Fublc%2Fwp-content%2Fwp-cont

Historical scenario

CASE A: Air quality impact of PR and CK wildfires

Hypothetical scenarios

□ CASE B: Air quality impact of posttreatment PR and CK wildfires

CASE C:

Air quality impact of **hypothetical prescribed fires**

How to analyze the air quality impacts?

How to differentiate the fire emissions under these scenarios?

Impact of PR and CK wildfires (CASE A)

Fuel loading at parks

Fuel consumption & emissions
by wildfires

Fuel consumption

Fuel loading after wildfire

Impact of post-treatment PR and CK wildfires (CASE B)

Fuel loading after prescribed fire

Fuel consumption & emission by post-treatment wildfire

Fuel consumption

Fuel loading after post-treatment wildfire

Impact of hypothetical prescribed fires (CASE C)

Fuel consumption & emissions by prescribed fires

Fuel consumption

Fuel loading after prescribed fire

Modeling wildland fire smoke

Air Quality Model	: CMAQ v5.2.1
Meteorology Model	: WRF v4.1
Gas-phase Chemistry	: cb06_nvPOA
Aerosol Chemistry	: AERO6
Resolution	: 4km X 4km
Domain	: 612km x 948km covering NC
Emission	: 2016 beta emission inventory
Fire Emission	: BlueSky Pipeline
Simulation Period	: Jan 01 to Dec 31, 2016

Base case simulation

Background emissions (EGUs, oil and gas, commercial marine vessels, other area sources, prescribed fires, agricultural fires and wildfires)

Model Simulations with CMAQ

How to analyze trade-offs between prescribed fire and wildfire smoke ?

Impact of PR and CK wildfires (CASE A) Impact of post-treatment PR and CK wildfires (CASE B)

Fuel loading after prescribed fire Air quality impact by post-treatment wildf res

VS

CASE A - CASE B Air quality "benefit" of prescribed fires

Impact of hypothetical prescribed fires (CASE C)

Satellite Imagery and 24-hr average ΔPM_{2.5} from PR and CK fires (CASE A)

11/10/2016

11/12/2016

11/16/2016

Hypothetical prescribed fires (500 acres each) on different days (CASE C)

Annual aggregated impacts under different scenarios

The hypothetical wildfires have reduced air quality impacts.

Aggregated air quality benefits of prescribed fires are much higher than their own air quality impacts.

Temporal variation of impacts under different scenarios

Favored and affected population at different PM levels

Summary

□ Simulated concentrations are **consistent with the satellite images**.

- □ Air quality benefits of prescribed fires are higher than their air pollution impacts for the case study.
- The population benefiting from reduced wildfire pollution is larger than the population affected by prescribed fire smoke in the case study.

Limitations:

- □ Results are for **PR and CK fuel beds**.
- **Q** Results depend on the **selection of** hypothetical prescribed fire **burn dates**.
- **Q** Results will depend on the **actual burn area after fuel reduction**.

Acknowledgements

We thank the North Carolina Division of Parks and Recreation for sharing their burning area data.

- □ We appreciate the support provided by U.S. EPA's Office of Air Quality Planning and Standards for sharing emission and meteorology files.
- We acknowledge funding from the Joint Fire Science Program under project 16-1-08-1 and the National Science Foundation under Agreement 1751601.

- Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect those of the JFSP or NSF.

Thanks

safrin@ncsu.edu

Supplementary Slides

Model performance evaluation

Above 80% of the sites meet the air quality modeling target* for both NME and NMB.

Overall, NME and
 NMB of all sites meet
 benchmark model
 performance goals*.