CENTER FOR

ASTROPHYSICS

HARVARD & SMITHSONIAN

Sponsored by:

Aura Science Team, MEASURES, and

Science of Terra, Aqua, and Suomi NPP

Non-linear Joint Inversion of NOx and NMVOC Emissions Using Satellite Observations over East Asia

Amir H. Souri¹, Caroline R. Nowlan¹, Gonzalo González Abad¹, Lei Zhu^{1,2}, Donald R. Blake³, Alan Fried⁴, Andrew J. Weinheimer⁵, Armin Wisthaler⁶, Jung-Hun Woo⁷, Qiang Zhang⁸, Christopher E. Chan Miller¹, Xiong Liu¹, and Kelly Chance¹

¹Harvard-Smithsonian ²SusTech ³UCI ⁴UC-Boulder ⁵NCAR ⁶Oslo ⁷Konkuk ⁸Tsinghua

Oct 2020 - CMAS Meeting - Virtual

Background

- The absence of updated emissions has been a major impediment to sufficiently simulate different aspects of atmospheric chemistry.
- Bottom-up emissions inventories:
 - Fuel combustion (mobile, power plants and etc.)
 - Biomass burning (satellite data and fuel information)
 - Lightning (convective parametrization)
 - Biogenic emissions (microbial processes in soil, plants functional maps, emission factors, resistance calculations)
- The bottom-up emissions are subject to errors and being obsolete.

Objective

- Any relevant data can be used to constraint the bottom-up emissions. (<u>as relevant</u> (linear) as possible!)
- Having well-characterized satellite observations may improve the bottom-up estimates for those areas undergoing larger errors (or bigger changes) in emissions compared to the uncertainty associated with satellites-based measurements (projected onto the emission space).
- We will attempt to constrain both NO_x and VOC emissions using OMI and OMPS:
 - \checkmark This will enable us to constrain the ozone production rates.
 - ✓ The chemical feedback existing between NO_x-HCHO and VOC-NO₂ is considered.
 - ✓ We will be able to quantify the impact of the recent changes in anthropogenic emissions in East Asia on ozone pollution.

Data (NO₂)

- We use NASA OMI tropospheric NO₂ (version 3.1) level 2 data whose retrieval is based on the violet/blue (402-465 nm) due to its strong absorption in this wavelength range.
- The sensor has a nadir spatial resolution of 13×24 km² which can extend to 40×160 km² at the edge of scanlines.
- We remove bad pixels based on cloud fraction < 20%, solar zenith angle < 65°, without the row anomaly, vertical column density (VCD) quality flag = 0, and Terrain Reflectivity < 30%.
- We recalculate AMFs using shape factors derived from the chemical transport model used in this study. We oversample the OMI granules using the Cressman interpolator with a 0.25° radius of influence.

Data (HCHO)

- OMPS-NM onboard the Suomi National Polar-orbiting Partnership (Suomi NPP) is a UVbackscattered radiation spectrometer launched in October 2011
- The sensor has a 340×740 pixel CCD array measuring the UV spectra at a spatial resolution of 50×50 km² at nadir.
- OMPS HCHO algorithm follows the SAO algorithm [Gonzalez et al., 2016] in the spectral range 327.7-356.5 nm.
- We use earthshine radiances over a relatively clear area in the remote Pacific Ocean within -30° to +30° latitudes.
 - An upgrade to this reference correction is the use of daily HCHO profiles over the mean climatological ones from simulations done by the GEOS-Chem chemical transport model.
- We remove unqualified pixels based on cloud fraction < 40%, solar zenith angle < 65°, a main quality flag provided in the data.
- We recalculate AMF using a regional model, and use the Cressman spatial interpolator with a 1° radius of influence for oversampling.

OMI had depreciated a lot.

Benchmark

Corr = 0.85

Corr = 0.27

Model (WRF-CMAQ)

- We simulate the atmospheric composition in East Asia using the CMAQ model [Byun and Schere, 2006] at 27 km spatial resolution with 328×323 grid size.
- May-June 2016.
- We choose the **CB05** gas-phase mechanism, which includes chlorine chemistry and the sixgeneration aerosol mechanism (**AERO6**) which considers sea salt and aqueous/cloud chemistry.
- We process anthropogenic emissions for the CMAQ domain from the MIX emissions inventory 2010 [Li et al., 2015].
- The **FINN v1.6** emissions [Wiedinmyer et al., 2011] are extended to include biomass burning emissions.
- We use a standalone **MEGAN (v2.1)** [Guenther et al., 2006] model to include biogenic emissions.
- The diurnally lateral chemical conditions are generated by GEOS-Chem v10 [Bey et al., 2001] with the full chemistry mechanism (NO_x-O_x-HC-Aer-Br) spun up for a year.

Model (WRF-CMAQ)

- In order to simulate the mesoscale meteorology, we use the Weather Research and Forecasting model (WRF) v3.9.1 [Skamarock et al., 2008].
- The lateral boundary conditions and the grid nudging inputs come from the global Final (FNL)
 0.25° resolution model.
- Physical options include: **KF** sub-grid cumulus parametrization

WSM-6 for microphysics, ACM2 scheme for the planetary layer fluxes, Noah Land-Surface Model for the surface physics, and Rapid Radiative Transfer Model (RRTM) for short- and long-wave radiation.

Inverse Modeling (Analytical)

 The inversion seeks to solve the following cost function under the assumptions that i) both observation and emission error covariances follow Gaussian probability density functions with a zero bias, ii) the observation and emission error covariances are independent and iii) the relationship between observations and emissions is not grossly non-linear:

•
$$J(\mathbf{x}) = \frac{1}{2} (\mathbf{y} - F(\mathbf{x}))^T \mathbf{S}_o^{-1} (\mathbf{y} - F(\mathbf{x})) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_a)^T \mathbf{S}_e^{-1} (\mathbf{x} - \mathbf{x}_a)$$

where x is the inversion estimate (the a posteriori) given two sources of data: the a priori (x_a) and observation (y). S_o and S_e are the error covariance matrices of observation (instrument) and emission. F(x) is the the forward model.

Inverse Modeling (Optimization)

- Gauss-Newton method:
 - $\mathbf{x}_{i+1} = \mathbf{x}_a + \mathbf{G}[\mathbf{y} F(\mathbf{x}_i) + K_i(\mathbf{x}_i \mathbf{x}_a)]$ • $\mathbf{G} = \mathbf{S}_e K_i^T (K_i \mathbf{S}_e K_i^T + \mathbf{S}_o)^{-1}$
 - $\mathbf{G} = \mathbf{S}_e \ K_i \ (K_i \mathbf{S}_e \ K_i^{-} + \mathbf{S}_o)$ • $\hat{\mathbf{S}}_e = (\mathbf{I} - \mathbf{G}\hat{K}^T)\mathbf{S}_e$
 - $\mathbf{A} = \mathbf{I} \hat{\mathbf{S}}_e \mathbf{S}_e^{-1}$
- *K* is calculated by CMAQ-DDM (which calculates the first derivative concentrations to emissions)
- $K_i (= K(\mathbf{x}_i))$
- Here we iterate the optimizer three times.
- A explains the amount of information gained from observations.

Inverse Modeling (Chemical Feedback)

Inverse Modeling (Observation errors)

• Errors in the retrieval

- Random errors
 - They never cancel each other.
 - Can be significantly lowered down by oversampling (reason why we also include partially cloudy pixels).
- Systematic errors
 - They can cancel each other.
 - Should be directly added/removed to the observations.
- In practice, there is no "the truth" to determine the exact systematic errors, so there is an error in the systematic error estimation that should be added to S_o
- We followed Zhu et al. [2020]'s intercomparison platform using KORUS-AQ data over the Korean Peninsula to calculate the bias (-20%) and the errors associated with.
- Regarding NO₂, we followed Choi et al. [2019]. We uniformly scaled up NO₂ by by 33.9% (see table A3 in the paper).
- Random errors are derived from the column uncertainty variables, AMFs (20%).

Inverse Modeling (Emission errors)

- A general rule thumb says anthropogenic emissions (50%) are less uncertain than biogenic ones (100-300%).
- To increase the degree of freedom for the optimization, we combine all sector emissions including anthropogenic, biomass burning and biogenic emissions for NO_x and VOCs. Therefore, we use the following formula to estimate the covariance of the a priori:

•
$$\sigma_{Total}^2 = f_{Anthro}^2 \times_{\sigma Anthro}^2 + f_{BB}^2 \times_{\sigma BB}^2 + f_{Bio}^2 \times_{\sigma Bio}^2$$

	Anthropogenic	Biogenic	Biomass Burning
NO _x	50%	200%	100%
VOC	150%	200%	300%

Consistent with OMI Tropospheric NO₂ trends

Souri et al., 2017, JGR

Numbers for NO_x

Table 1. NO_x emissions before and after carrying out the inversion for different countries in May-June 2016.

Countries	The a priori	The a posteriori	Changes in	Changes in
	(Gg/day)	(Gg/day)	magnitudes	errors
China	87.94±44.09 ¹	68.00±15.94 ²	-23%	-63%
North China Plain	27.96±13.49	19.05±2.50	-32%	-81%
Pearl River Delta	4.23±1.78	2.70±0.32	-36%	-84%
Yangtze River Delta	9.84±4.68	5.77±0.51	-41%	-89%
Thailand	4.38±3.24	4.20±2.28	-4%	-29%
Japan	3.53±1.71	3.96±1.04	+12%	-39%
Malaysia	2.89±2.77	2.25±1.34	-22%	-49%
Vietnam	2.87±2.04	2.79±1.57	-3%	-23%
South Korea	2.71±1.34	2.95±0.58	+9%	-56%
Bangladesh	1.72±1.06	2.10±0.87	+22%	-18%
Philippines	1.30±1.10	1.54±0.98	+18%	-11%
Taiwan	1.26±0.57	0.97±0.33	-23%	-42%
Cambodia	0.54±0.50	0.57±0.45	+5%	-11%
Mongolia	0.19±0.13	0.28±0.12	+44%	-8%

Validation

We observe an underestimation of NO₂ at the near surface levels (<900 hPa) by 19% (DC8 = 4.50 ppbv, CMAQ = 3.67 ppbv). The updated emissions increase the near surface levels over the Korean Peninsula, which in turn, reduce the bias to 11% (CMAQ = 4.02 ppbv).

Validation

- The comparison of the simulated values with the DC-8 measurements showed a noticeable mitigation in the discrepancy between two datasets at lower boundaries (<900 hPa) in terms of isoprene, ethane, ethene, and acetaldehyde.
- We tend to underestimate HCHO concentrations (by 15%) in the lower atmosphere (<900 hPa) after using the a posteriori over the Korean Peninsula.

Ozone pollution has gotten worse in North China

- Enhancements of maximum daily 8-hour average (MDA8) surface ozone over China (0.62 ppbv), NCP (4.56 ppbv), and YRD (5.25 ppbv) suggesting that emissions standards should be extended to regulate VOCs.
- Taiwan, Malaysia, and PRD stand out as the regions undergoing lower MDA8 ozone levels resulting from the NO_x reductions occurring predominantly in NO_x-sensitive regimes.

Conclusions

- For the first time, we performed joint non-linear analytical inversion of NO_x and VOC using satellite observations.
- OMI/OMPS bolster the capability of the CTM in terms of the simulation HCHO and NO₂ columns by providing credible top-down emissions (AKs>0.8) over polluted areas and dense vegetation.
- Low AKs in terms of NO_x in rural areas; it is desirable, but very challenging to gain information from OMI over pristine regions.

Conclusions

- Reductions of NO_x (from 2010 to 2016) in China (-23%), Taiwan (-23%), and Malaysia (-22%). Increases in NO_x in Japan (+12%) and South Korea (+9%)
- An increase in (mainly anthropogenic) VOCs in NCP by 25% since 2010.
- In NCP and YRD, a substantial reduction in afternoon NO₂+OH reaction rate (a major loss of O₃), and an increase in afternoon NO+HO₂ and RO₂+NO (a major production pathway for O₃) are observed.
 - This leads to enhancements of the simulated maximum daily 8-hr average (MDA8) surface ozone concentrations by ~5 ppbv.
- Being predominantly in NO_x-sensitive regimes favors regions including Taiwan, Malaysia and PRD to benefit from reductions in NO_x, resulting in noticeable decreases in simulated MDA8 surface ozone levels.

- Thanks for NASA Aura Science Team, NASA MEaSUREs, NOAA AC3, and NASA Science of Terra, Aqua and Suomi NPP Funds.
- For more detail: doi.org/10.5194/acp-20-9837-2020

Thanks for your attention!

NO2 and HCHO profiles

Figure S4. Comparison of the simulated model using the prior/posterior emissions and DC-8 measurements in terms of NO₂ mixing ratios. We included all 10-secs observations available from DC-8 four-channel NCAR's chemiluminescence in May-June 2016. The profiles are the mean average.

Figure S10. Comparison of the simulated model using the prior/posterior emissions and DC-8 measurements in terms of HCHO. We included all 10-secs observations available from DC-8 in May-June 2016. The profiles are the mean average.

OH and HO2 changes

Figure S11. The simulations of surface OH before and after the inversion at 1200-1600 CST.

Figure S12. The simulations of surface HO₂ before and after the inversion at 1200-1600 CST.