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Motivation

High concentrations of ambient aerosols
are linked to respiratory and cardiovascular
conditions
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We want to better understand how HVAC

systems with mechanical ventilation
influence indoor aerosol composition and
chemical processing
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Johnson et al., Indoor Air, 2017
This work demonstrates a proof of concept
for addressing these gaps with a focus on
indoor inorganic aerosols (I1A) from outdoor
origin by expanding Cummings & Waring
(2019) indoor organic model



ISORROPIA

Inorganic aerosol (IA)
thermodynamic equilibrium
model

Widely used to predict gas/
particle partitioning

Inputs for forward mode are
temperature (7), relative
humidity (RH), and total
concentration

The stable mode can have both
solid & liquid phase aerosol
while the metastable mode only
has liquid state aerosol

First instance of applying
ISORROPIA in an indoor model

Nenes et al., Aquatic Geochemistry, 1998; Fountoukis et al., Atmospheric Chemistry and Physics, 2007



The Indoor Model
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Model Input

 Measured indoor
and outdoor T, RH,
and CO,, as well as
outdoor IA
concentration data
from Avery et al
(2019) was used as
input for this model

e Assumed the same

air flow rates as
Avery et al. (2019)
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Avery et al. Environmental Science: Processes & Impacts, 2019

* Occupant NH; was derived from CO, data using methods from Li et al. (2020)

* Background NH; was estimated using a correlation published by Ampollini et al. (2019)



Find Gas Phase Algorithm (FGA)
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Guo et al., Journal of Geophysical Research: Atmospheres, 2016

Read in measured

T,RH,&C,,

l

Read in corresponding

ISORROPIA table
define limits of detection
& allowable error range
(AER = LODi/Ci’ aqt 0.20)
0,/2S0, > 14
No Yes
Estimate pH using Estimate pH using
methods from methods from
Guo et al. (2015) Guo et al. (2016)
R Ci,aq within
’ AER?
No Yes
Get best guess
Increase additive error Ci,g
in AER by 5%




FGA Evaluation | summer episode
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HVAC Thermodynamics
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switching system

phase in the summer, but not in the winter

Deliquescence is encouraged by warm air

and particles being cooled down

particles being warmed up

Efflorescence is encouraged by cold air and

2 instruments

* A75% HNOj; loss to the cooling coil was used
and based on a parametric test

* A filter efficiency of 10% and 30% for the
summer and winter respectively was used
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Comparison of Modeled & Measured Concentrations
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Future Work & Summary

* Assessing model sensitivity to indoor ammonia sources (such as from
third hand smoke) is ongoing

* ISORROPIA was integrated into an indoor aerosol model to predict IA
partitioning for the first time

* Modeling IA partitioning in the winter could be more complicated or
the FGA is only applicable to the summer set

 Serves as proof of concept towards exploring how heating,
ventilating, and air-conditioning (HVAC) systems influence indoor
aerosol composition and chemical processing, with a focus on indoor
aerosols of outdoor origin, using ISORROPIA
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