Impacts of COVID-19 Related Shutdown on Onroad and Air Transportation Emissions-related $O_{3,} NO_2$ and $PM_{2.5}$ in the U.S. using Sensitivity Modeling Techniques

Saravanan Arunachalam UNC-CH

Calvin Arter UNC-CH

Gavendra Pandey UNC-CH

Jonathan Buonocore Harvard C-CHANGE

19th ANNUAL CMAS Conference Oct. 26-30 | Virtual

All Results preliminary. Please do not cite or quote

Due to COVID-19, 3.6B people were on lockdown globally Air Pollution declines reported globally e.g. 1: Himalayas visible from > 100 miles in Punjab, India (after several decades)

e.g. 2: Snow on San Gabriel Mtn and Blue Skies in Los Angeles (Smog Capital of the World)

Source: Getty Images

Change in PM_{2.5} during Lockdown

But ..

It is not clear if COVID-19 related shutdown led to uniform reductions in all air pollutants

- NO₂ levels marker for combustion clearly went down
- PM_{2.5} levels may not have gone down uniformly across U.S.
 - Varies from -30% in NYC to only -1% in Chicago in April
 - Increase in residential wood combustion, soot from trucking activity around urban areas, backyard BBQ cooking
 - Household electricity consumption increases during daytime when dirty generators are prevalent, etc.
- PM_{2.5} has both acute and chronic health impacts
 - Gains in acute, but not in chronic?
- Ozone levels may have actually gone up due to low NO₂ levels
 - $\circ~$ Due to reduced non-linear titration effect of NO_2 on Ozone
 - Barcelona, Spain saw 50% increase in Ozone, while NO₂ went down by 50% (Tobias et al, 2020)

Personal Travel Dropped a Lot..

While we saw > 50 – 60% drop in early April, personal travel has increased quite a bit from peak reduction for all 98% metro areas in the U.S.

But Freight, not as much

Findings

Passenger and Freight Travel Decreased during COVID-19

Passenger Travel Down 46 Percent Nationwide

Freight Travel Down 13 Percent Nationwide

• While passenger travel went down, freight travel didn't see too much decrease nation-wide

• In fact, had increases in several urban areas

INSTITUTE FOR

THE ENVIRONMENT

Objectives

- Quantify incremental benefits in health due to reduced levels of O_3 , NO_2 and $PM_{2.5}$ due to reductions in
 - Onroad transportation
 - By light duty (passenger cars) vs. heavy duty (trucks)
 - In the entire U.S. and by each individual state
 - Commercial aviation
 - In the entire U.S. air space and by each of select top airports

Approach (1 of 2)

CMAQ

DDM

Photochemical air quality model that estimates the pollutant concentrations across spatial and temporal **domain**

• Version 5.2

Sensitivity analysis that calculates incremental change in pollutant concentrations with respect to model input (emissions) across the domain to estimate how sensitive pollutant concentrations are to emissions

Emissions

Source Regions	By Individual U.S. State for Onroad By Select Airports for Air
Vehicles	Passenger Cars vs. Trucks Commercial Air Traffic
PM _{2.5}	NO _X , VOC, SO ₂ , NH ₃ , PPM for Onroa NO _X , VOC, SO ₂ , PPM for Air
0.	

IDUNC INSTITUTE FOR THE ENVIRONMENT

DDM: Decoupled Direct Method PPM: Primary Particulate Matter , (»))

Approach (2 of 2)

Translate Reductions in Transportation Activity to Health Benefits

- Parse activity data from Onroad vehicles and Commercial flight operations to compute monthwise ratios (% reduction compared to a baseline)
 - May, June, July 2020 vs. February 2020 for Onroad Sector
 - May, June, July 2020 vs. May, June, Jul 2015 for Commercial Aircraft
- Apply these to CMAQ-DDM based sensitivities for O₃, NO₂ and PM_{2.5}
- Perform heath impact calculations and monetize them

Health Impact and Valuation Functions

- PM_{2.5} all-cause mortality Concentration-Response Function (CRF) from Vodonos et al. 2018, 1.29% (1.09 1.5%)
- O_3 all-cause mortality CRF from Turner et al. 2016, 0.2% (0.1 0.4%)
- NO₂ all-cause mortality CRF from Faustini et al. 2014, 0.21% (0.11 0.32%)
- Mortality data from the Centers for Disease Control (CDC) Wide-ranging Online Data for Epidemiological Research (WONDER)
 - https://wonder.cdc.gov/mortSQL.html, county level baseline mortality rates from 1999 to 2016
- Population data from U.S. Census American Community Survey for the year 2018, U.S. Census tract level
- 2016 USD (\$) income-adjusted VSL of \$10.2M

U.S.-wide reductions

- **Onroad Passenger** Traffic Activity (VMT)

State-specific reductions

- Onroad Passenger Activity (VMT)

UNC INSTITUTE FOR THE ENVIRONMENT

Nation-wide reductions

- Onroad Truck Traffic Activity (VMT)

• Comparing 2020 by month vs. Feb 2020: Freight activity reduced only modestly

State-specific reductions - Onroad Truck Activity (VMT)

IDUNC INSTITUTE FOR THE ENVIRONMENT

U.S.-wide reductions

- Air Traffic Activity (LTO Operations)

 $\square)))$

Airport-specific reductions

- Air Traffic Activity (LTO Operations)

0.62

July

0.52

June

0.4

0.0

March

0.41

April

0.39

May

Comparing 2020 vs. 2015 by month: - Large airports saw over 80% reductions

INSTITUTE FOR THE ENVIRONM Change in PM_{2.5} concentrations due to reduction in

INSTITUTE FOR

THE ENVIRONMENT

Passenger vehicle activity in Arkansas

-20% in May -4% in June ug/m3 ug/m3 ATOTIJ ATOTIJ 50°N 50°N 87 45°N · 45°N 40°N · 40°N 8 8 35°N 35°N 30°N · 30°N 25°N -25°N 110°W 100°W 90°W 70°W 120°W 80°W 120°W 110°W 100°W 90°W 80°W 70°W *July had 0% -0.008 -0.004 0.004 0.006 0.008 0.01 -0.01 -0.006 -0.002 0.002 0 change in VMT

 μ g/m³

CONUS grids	% Decrease in VMT	Average	Median	Max	Min
May_ratio	20%	-0.00046	-8.85e-05	0.00037	-0.037
Jun_ratio	4%	-9.23e-05	-1.76e-05	7.49e-05	-0.008 17

Change in O₃ concentrations due to percent change in Passenger vehicle activity in Arkansas

UNC INSTITUTE FOR THE ENVIRONMENT

CONUS grids	% Decrease in VMT	Average	Median	Max	Min	
May_ratio	20%	-0.0072	-0.0014	0	-0.33	ົງ
Jun_ratio	4%	-0.0014	-0.0002	0	-0.07 18	

Change in NO₂ concentrations due to reduction in Passenger vehicle activity in Arkansas

CONUS grids	% Decrease in VMT	Average	Median	Max	Min	
May_ratio	20%	-0.00087	-8.46e-06	0.00036	-0.41	2
Jun_ratio	4%	-0.00017	-1.67e-06	7.15e-05	-0.08 19	

Reduction in Premature mortalities due to percent change in Passenger vehicle activity in Arkansas

	INSTITUTE FOR
UINC	THE ENVIRONMENT

	May -20% VM	Ratio T Activity	June Ratio -4% VMT Activity				
	Premature Mortalities (95% CI)	Valuation (2016 USD)	Premature Mortalities (95% CI)	Valuation (2016 USD)			
PM _{2.5}	22.3 (18.8 - 25.9)	\$230M (\$190M - \$260M)	4.46 (3.76 - 5.18)	\$45M (\$38M - \$53M)			
O ₃	46.5 (23.2 - 92.9)	\$470M (\$240M - \$950M)	9.29 (4.65 - 18.6)	\$95M (\$47M - \$190M)			
NO ₂	8.14 (4.07 - 12.2)	\$80M (\$40M - \$120M)	1.63 (0.814 - 2.44)	\$17M (\$8M - \$25M)			
Total	77	\$780M	15	\$160M			
* July ratio was 0% change in VMT 20							

*July ratio was 0% change in VMT

Reduction in Premature mortalities due to percent change in Freight vehicle activity in Arkansas

	May Ratio -15% VMT Activity		June Ratio -6% VMT Activity		July Ratio -7% VMT Activity	
	Premature Mortalities (95% CI)	Valuation (2016 USD)	Premature Mortalities (95% CI)	Valuation (2016 USD)	Premature Mortalities (95% CI)	Valuation (2016 USD)
PM _{2.5}	12.8 (10.8 - 14.8)	\$130M (\$110M - \$150M)	5.1 (4.31 - 5.93)	\$52M (\$44M - \$60M)	5.95 (5.03 - 6.92)	\$61M (\$51M - \$71M)
O ₃	22.8 (11.4 - 45.6)	\$230M (\$120M - \$460M)	9.11 (4.56 - 18.2)	\$93M (\$46M - \$190M)	10.6 (5.31 - 21.3)	\$110M (\$54M - \$220M)
NO ₂	5.62 (2.81 - 8.43)	\$57M (\$29M - \$86M)	2.25 (1.12 - 3.37)	\$23M (\$12M - \$34M)	2.62 (1.31 - 3.93)	\$27M (\$13M - \$40M)
Total	41	\$420M	16	\$170M	19	\$200M

Reduction in Premature mortalities due to percent change in LTO activity Nation-wide

UNC INSTITUTE FOR THE ENVIRONMENT

22

	May Ratio -64% Flight Activity		June Ratio -54% Flight Activity		July Ratio -36% Flight Activity	
	Premature Mortalities (95% CI)	Valuation (2016 USD)	Premature Mortalities (95% CI)	Valuation (2016 USD)	Premature Mortalities (95% CI)	Valuation (2016 USD)
PM _{2.5}	164 (139 - 191)	\$1.67B (\$1.41B - \$1.94B)	138 (117 - 161)	\$1.41B (\$1.19B - \$1.64B)	92.2 (77.9 - 107)	\$0.94B (\$0.79B - \$1.09B)
O ₃	202 (101 - 404)	\$2.06B (\$1.03B - \$4.12B)	170 (85.2 - 341)	\$1.74B (\$8.69B - \$3.47B)	114 (56.8 - 227)	\$1.16B (\$0.58B - \$2.32B)
NO ₂	279 (140 - 419)	\$2.84B (\$1.42B - \$4.26B)	235 (118 - 353)	\$2.4B (\$1.2B - \$3.6B)	157 (78.5 - 235)	\$1.6B (\$0.8B - \$2.4B)
Total	645	\$6.6B	543	\$5.5B	363	\$3.7B

Discussion

- COVID-19 related shutdown reduced activity in transportation sector in the first few months
- Used CMAQ-DDM based sensitivities to assess potential benefits in health risk due to changes in O₃, PM_{2.5} and NO₂ from reduced activity in each of commercial aircraft, passenger cars and trucks
- Illustrative results shown for nation-wide for commercial aviation and for Arkansas for onroad activity
 - Upto 645, 77 and 41 premature deaths avoided due to magnitude of reductions in May in aviation (U.S. wide), passenger cars (AR) and trucks (AR) activity respectively
- Ongoing work to complete this analysis for all states and major airports to assess range of benefits due to reduced activity in the transportation sector, and compare/contrast between them

Acknowledgements

- The work performed here was supported in part by
 - \circ Barr Foundation
 - Federal Aviation Administration (FAA) under the Aviation Sustainability Center of Excellence (ASCENT) under FAA Award # 13-C-AJFE-UNC
 - We also gratefully acknowledge contributions from
 - \odot Vlad Isakov, U.S. EPA
 - \odot INRIX for U.S. traffic datasets

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA or other ASCENT Sponsors

