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1. INTRODUCTION 
 
In recent decades, some of the world’s water 

bodies, such as the Aral Sea, Dead Sea, Lake 
Poopó, Lake Eyre and Lake Mead have been 
shrinking mostly due to human-induced activities 
and climate change. Desertification caused by the 
drying up of these lakes have led to soil 
degradation and dust storms which have negative 
impacts on people’s health and the environment 
as well (Barnett and Pierce., 2008; Indoitu et al., 
2015; Izdebski et al., 2016; Satgé et al., 2017; 
Farebrother et al., 2017). Urmia Lake in the 
northwest of Iran has lost most of its water surface 
area over the past 2 decades mainly due to 
agricultural development and misguided water 
policies in the basin (Hassanzadeh et al., 2012; 
Chaudhari et al., 2018; Alizade Govarchin Ghale 
et al., 2018; Khazaei et al., 2019; Alizade 
Govarchin Ghale et al., 2019). This lake is known 
as the second largest hypersaline lake worldwide 
and its basin covers 3% of the area of Iran 
(Eimanifar and Mohebbi, 2007). The maximum 
water surface area of the lake was observed (i.e., 
6000 km2) in the 1990s, while more than 90% of 
this area was lost in 2015 (Alizade Govarchin 
Ghale et al 2019). The dried bottom of Urmia Lake 
can be the source of dust storms and air pollution. 
Despite the importance of the effects of the lake 
desiccation on the air quality, few studies have 
been conducted in this area. Gholampour et al. 
(2017) concluded that the crustal soils around the 
lake are the main source of aerosol emissions. 
Sotoudeheian et al. (2016) used ground-level 
PM10 data and Hybrid Single-Particle Lagrangian 
Integrated Trajectory (HYSPLIT) model during the 
dust episodes to estimate the impacts of dried lake 
bed on PM10 in the northwest of Iran. Their results 
indicated that emitted dust from the dried bottom 
of the lake can lead to ~30–60% increase in PM10 
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of cities around the lake. In a recent study, Effati et 
al. (2019) used MODIS data to estimate the dust 
emission probability in Urmia Lake Basin. They 
found high correlation between dust emission 
probability and wind speed, soil texture together 
with the surface soil moisture. Previous studies 
have not examined the relationship between 
ground-level PM10 and AOD derived from satellite 
in the northwestern Iran. In this study, hourly 
ground observation PM10 data of Urmia station, 
the closest station to the lake, AOD data of Terra 
MODIS and Aqua MODIS observed between 2010 
and 2017 were used to investigate the spatio-
temporal aerosol pollution in the northwestern 
Iran. AOD data derived from MODIS, daily 
meteorological data of Urmia station and statistical 
methods including Multiple Linear Regression 
(MLR) and Linear Mixed Effect (LME) were used 
to predict PM10 concentration in the northwestern 
Iran.  
 
2. MATERIALS AND METHODS  
 
2.1. STUDY AREA 

 
Urmia Lake (N 37.5°, E 45.5°) with a surface 

area ranging between 5000 and 6000 km2 is 
located between West Azerbaijan and East 
Azerbaijan provinces of Iran (Eimanifar and 
Mohebbi, 2007). It is the largest inland lake of Iran 
and one of the largest hypersaline lakes in the 
world, at an altitude of 1250 m above sea level 
(Zarghami, 2011). Fig. 1. (a) indicates the location 
map of Urmia Lake and its basin in the 
northwestern Iran and Fig. 1. (b) indicates the 2° ´ 
2° box covering Urmia Lake and its vicinity. The 
lake is an internationally protected area and it is 
home for different species of birds and mammals. 
More than 5 million people live in the regions close 
to the lake and agricultural sector accounts for 
30% of employment around the lake (ULRP, 
2019).  
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Fig. 1. (a) The location map of Urmia Lake and its 

basin in the northwestern Iran. (b) Box covering Urmia 
Lake. 

 
2.2. METHODOLOGY 
 

This study used the hourly ground-level PM10 
data of Urmia station in the northwestern Iran 
conducted by Department of Environment. PM10 
represents inhalable particles with diameters that 
are generally 10 micrometers and smaller (You et 
al., 2015). The hourly data were converted to daily 
average PM10 data and statistical methods such 
as trend analysis were performed month by month 
on daily data to find episodes with same trends.  In 
the next step, daily level 2 Aerosol Optical Depth 
data (at 550 nm) of Aqua MODIS (MYD04) and 
Terra MODIS (MOD04), collection 6.1, at 10 *10 
km spatial resolution were used as a columnar 
proxy of aerosol abundance. An optical depth of 
less than 0.1 indicates a clear sky with maximum 
visibility, while a value of 1 indicates dust and very 
hazy conditions (NASA earth observatory., 2019). 
The daily average AODs in a 2° ´ 2° box (covering 
Urmia Lake and its vicinity) were used to 
understand the aerosol concentration in the 
western and eastern parts of the lake. The 
monthly average AODs were calculated using the 
daily AODs to evaluate the seasonal optical 
depths changes around Urmia Lake.  

Meteorological data especially Temperature 
(Tem), Relative Humidity (RH) and Wind Speed 
(WS) impact the relationship between AOD and 
PM10 by affecting physical features and chemical 
compositions of particles (Ghotbi et al., 2016; Soni 
et al., 2018). 

Particles formation and photochemical 
reactions between precursors can be affected by 
RH and temperature. RH variations influence on 
the particles size and their distribution due to 
photochemistry phenomena and hygroscopic 
particles growth (Soni et al., 2018). WS can 
transfer different particulate matters from different 

sources and cause diluting the concentration of 
pollutants, which affect the mixing of aerosols. 
Therefore, in addition to AOD, meteorological 
parameters should also be used in estimation of 
PM10. Many researchers used different kinds of 
statistical models such as Simple Linear 
Regression, Empirical Linear Regression, Multiple 
Linear Regression, Log-linear Regression and 
Linear Mixed Effect (LME) models to explore the 
relationship between daily average PM and AOD 
(Dinoi et al., 2010; You et al., 2015; Ghotbi et al., 
2016; Soni et al., 2018). Among these models, the 
multi-variable LME model has performed better 
(Lee et al., 2011; Kloog et al., 2011; Nordio et al., 
2013; Ghotbi et al., 2016). The MLR and multi-
variable LME models were used in this study to 
explore the relationship between PM10 and AOD in 
the northwestern Iran. The daily metrological data 
of Urmia station and daily average AOD values in 
the western Urmia Lake (west box) were used to 
estimate ground-level PM10. The Equations of 
MLR and LME are shown below, respectively:  
 
PM = a + (b1) × AOD + (b2) × Tem + (b3) × RH + 
(b4) × WS + e                                                      (1) 
 

where, all variables are averaged daily. PM 
indicates the PM10 concentration at Urmia station 
(dependent variable). AOD, Tem, RH and WS are 
independent variables, a is intercept, b1, b2, b3 and 
b4 are regression coefficients and e represents the 
error term.  

 
PMij = (c + Uj) + (d) × Temij + (Vj) × AODij + (Wj) × 
RHij + (Zij) × WSij + eij                                          (2)  
 

where, PMij indicates the PM10 concentration 
(dependent variable) at the i-th site on the j-th day, 
c and Uj are the fixed and random intercepts, 
respectively, d and Vj/ Wj/ Zij are the fixed and 
random slopes, respectively and eij indicates the 
error term in i-th site and j-th day. Temij, AODij, 
RHij and WSij are independent variables in i-th site 
and j-th day.  

 
3. RESULTS AND DISCUSSION 

 
Analyzing the daily mean (24-hour mean) 

PM10 concentration is necessary for understanding 
the air quality changes and air pollution category 
in the study area. The United States 
Environmental Protection Agency (EPA) has 
classified 24-hour mean PM10 (μg/m3) values to 4 
categories including; very good (0 – 16.4), good 
(16.5 – 32.9), fair (33 – 49.9), poor (50 – 74.9) and 
very poor (75 or greater) (EPA., 2019). The 
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maximum 24-hour mean PM10 concentration was 
observed in Urmia station at December 16 2015, 
which was 876.13 μg/m3. The maximum monthly 
mean PM10 concentration in Urmia station was 
174.96 μg/m3, observed in May 2015. There was 
no significant seasonal difference between PM10 
variations in the northwestern Iran. In this area, 
winter and summer seasons accounted for high 
level (93.65 μg/m3) and low level (89.02 μg/m3) 
PM10 concentrations, respectively. High levels of 
PM10 during the winter were expected due to the 
atmospheric conditions and the existence of local 
and regional air pollution sources during this 
season. The annual mean PM10 concentration 
significantly increased after 2013. It should be 
noted that the water level of Urmia lake 
dramatically dropped from 2013 to 2015 and more 
than 5000 km2 of its area changed to saline 
bodies.  

The results of satellite data processing 
showed that the negative impacts of Urmia Lake 
desiccation on the local and regional air quality is 
undeniable.  In the next step, the daily AOD values 
were obtained by averaging the AOD data of Terra 
MODIS and Aqua MODIS. The mean value of 
AODs were calculated in the west box (covering 
west part of the lake), east box (covering east part 
of the lake) and the box, covering both west and 
east parts of the lake to have a detailed spatio-
temporal analysis.  

Based on the results of this study, in total, 129 
days with mean AOD values more than 1 were 
observed in box covering all parts of the lake, 
which indicated the severity of air pollution and 
dust emission from the dried bottom of the lake. 
The daily mean AOD in the west box and east box 
was estimated about 0.348 and 0.508, 
respectively. The extensive of salinization and 
desertification in the eastern part of the lake can 
be the source of high AODs concentration in this 
part. The monthly mean AOD values were 
calculated using daily mean values. Based on the 
results of this study, the eastern part of the lake 
was more affected by the emitted dust from the 
dried bottom of the lake and winter accounts for 
higher AOD levels in the study period. In the next 
step, MLR and LME models were used to estimate 
the ground-level PM10 variations in Urmia station. 
Estimation of ground-level PM10 using AODs and 
meteorological variables (Tem, RH and WS) is 
very important to map PM10 concentrations in 
places, where there is no air quality station.  

Fig. 2. shows the scatter plot of AOD-PM10 
relationship and the scatter plot of predicted PM10 
by two statistical models versus observed PM10 
concentrations at Urmia station.  

 
Fig. 2. (a) Scatter plot of AOD-PM10 relationship (b) 

Scatter plot of predicted PM10 by MLR model versus 
observed PM10 concentrations (c) Scatter plot of 
predicted PM10 by LME model versus observed PM10 
concentrations.  

The results of LME were better than MLR. The 
RMSE and AME values of MLR were 45.60 μg/m3 
and 33.09 μg/m3, respectively, while, the RMSE 
and AME values of LME were 23.22 μg/m3 and 
16.59 μg/m3, respectively. The R2 of LME was 
0.95 and this model performed better than MLR. 
Moreover, the seasonal analysis of LME indicated 
that the summer and winter seasons account for 
higher (0.98) and lower (0.86) values of R2. The R2 
of MLR in summer and winter seasons was 0.14 
and 0.06, respectively. 

Fig. 3. shows the monthly variations of 
observed and predicted PM10 concentrations by 
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LME. There is a good match between the monthly 
mean observed and monthly mean predicted PM10 
concentrations. The predicted values given by red 
dashed line follow the trend of the observation 
especially when the observations are below 100 
μg/m3 as the smaller picks especially for example 
around 2014 the model predicts pretty good. 
There are a few cases where there is an 
overestimation and most of the time it is following 
the observation line, but in the area highlighted by 
circles, the model is underestimating significantly.  

 

 
Fig. 3. Monthly variations of observed and predicted 
PM10 concentrations by LME. 

So, from this figure it can be conclude that 
although the overall trend is estimated by model 
the extreme values of the observations cannot be 
modeled by LME model.  The future work can 
focus on the use of atmospheric transportation 
model (CMAQ) to understand the mechanics of 
dust transportation in the region. In addition to 
northwestern Iran, the high levels of PM10 values 
and aerosol concentration were observed in the 
eastern and southeastern Turkey. Investigation of 
the possible transportation of dust from Urmia 
Lake to neighbouring regions and countries is an 
interesting topic too.  

The results of this study emphasized the 
importance of using the multi-variable Linear 
Mixed Effect (LME) model in estimation of PM10 
concentrations.  
 
4. CONCLUSION 

 
The Shrinkage of Urmia Lake has caused 

many environmental problems in the northwestern 
Iran such as salinization, desertification and air 
pollution. Dust emission from the dried bottom of 
the lake and its negative impacts on people’s life 
has attracted the attention of government in recent 
years. Urmia Lake Restoration Program (ULRP) 
has contributed to reduce the severity of this 
environmental problem by providing scientific 
solutions, but still 3000 km2 of lake bed has 
potential to be the source of dust. Although, the 
eastern part of the lake is mostly affected by dust 

emission, other parts of the lake are also at risk. 
According to the UNEP studies (UNEP, 2012), the 
lake desiccation affects a region with a radius of 
500 km. In total, 129 days with mean AOD values 
more than 1 were observed in box covering all 
parts of the lake between 2010 and 2017, which 
indicated the severity of air pollution and dust 
emission from the dried bottom of the lake. The 
daily mean AOD in the west part of the lake and 
east part of the lake was 0.348 and 0.508, 
respectively. The extensive of salinization and 
desertification in the eastern part of the lake can 
be the source of high level AODs in this part. Two 
statistical models including MLR and LME were 
used for estimation of PM10 concentrations in 
Urmia station. The RMSE and AME values of MLR 
were 45.60 μg/m3 and 33.09 μg/m3, respectively, 
while, the RMSE and AME values of LME were 
23.22 μg/m3 and 16.59 μg/m3, respectively. The R2 
of LME was 0.95 and this model performed better 
than MLR model. Moreover, the seasonal analysis 
of LME indicated that the summer and winter 
seasons account for higher (0.98) and lower (0.86) 
values of R2.  

 
5. References 
 

Alizade Govarchin Ghale, Y., Altunkaynak, A., 
Unal, A. 2018. Investigation Anthropogenic 
Impacts and Climate Factors on Drying up of 
Urmia Lake using Water Budget and Drought 
Analysis. Water Resources Management 
32(1):325-337. DOI: 10.1007/s11269-017-1812-5  

Alizade Govarchin Ghale, Y., Baykara, M., 
Unal, A. 2019. Investigating the interaction 
between agricultural lands and Urmia Lake 
ecosystem using remote sensing techniques and 
hydro-climatic data analysis. Agricultural Water 
Management 221C:566-579. DOI: 
10.1016/j.agwat.2019.05.028  

Barnett, TP; Pierce, DW. 2008. When will 
Lake Mead go dry? Water Resources Research. 
Volume: 44, Issue: 3, Article Number: W03201m. 
DOI: 10.1029/2007WR006704  

Chaudhari, S., Felfelani, F., Shin, S., Pokhrel, 
Y., 2018. Climate and anthropogenic con- 
tributions to the desiccation of the second largest 
saline lake in the twentieth century. J. Hydrol. 
(Amst) 560, 42–353. 
https://doi.org/10.1016/j.jhydrol.2018.03.034.  

Dinoi, A., Perrone, M.R., Burlizzi, P. 2010. 
Application of MODIS Products for Air Quality 
Studies Over Southeastern Italy. Remote Sensing. 
DOI:10.3390/rs2071767  



Presented at the 19th Annual CMAS Conference, Chapel Hill, NC, October 26-28, 2020 

5 

Eimanifar, A., Mohebbi, F., 2007. Urmia Lake 
(Northwest Iran): a brief review. Saline Syst. 3, 5. 
https://doi.org/10.1186/1746-1448-3-5.  

Effati. M., Bahrami, H.A., Gohardoust, M.R., 
Babaeian, E., Tuller, M. 2019. Application of 
Satellite Remote Sensing for Estimation of Dust 
Emission Probability in the Urmia Lake Basin in 
Iran. Soil Science Society of America Journal, 
83(4), 993 1002. 
https://doi.org/10.2136/sssaj2019.01.0018  

EPA, United States Environmental Protection 
Agency, http://www.epa.gov 

Farebrother, W; Hesse, PP; Chang, HC; 
Jones, C. 2017. Dry lake beds as sources of dust 
in Australia during the Late Quaternary: A 
volumetric approach based on lake bed and 
deflated dune volumes. Quaternary Science 
Reviews. Volume: 161, Pages: 81-98, DOI: 
10.1016/j.quascirev.2017.02.019  

Gholampour, A., Nabizadeh , R., Hassanvand, 
M.S., Taghipour, H., Nazmara, S., Mahvi, A.H. 
2017. Elemental composition of particulate matters 
around Urmia Lake, IranToxicological and 
Environmental Chemistry 99(1):1-29. DOI: 
10.1080/02772248.2016.1166226  

Ghotbi, S., Sotoudeheian, S., Arhami, M. 
2016. Estimating urban ground-level PM10 using 
MODIS 3km AOD product and meteorological 
parameters from WRF model. Atmospheric 
Environment. Volume 141, September 2016, 
Pages 333-346. 
https://doi.org/10.1016/j.atmosenv.2016.06.057  

Hassanzadeh, E., Zarghami, M., 
Hassanzadeh, Y., 2012. Determining the main 
factors in declining the Urmia Lake level by using 
system dynamics modeling. Water Resour. 
Manag. 26 (1), 129–145. 
https://doi.org/10.1007/s11269- 011-9909-8  

Indoitu, R., Kozhoridze, G., Batyrbaeva, M., 
Vitkovskaya, I., Orlovsky, N., Blumberg, D., 
Orlovsky, L. 2015. Dust emission and 
environmental changes in the dried bottom of the 
Aral Sea. Aeolian Research.Volume 17, June 
2015, Pages 101-115. 
https://doi.org/10.1016/j.aeolia.2015.02.004  

Izdebski, A ., Pickett, J ., Roberts, N ., 
Waliszewski, T. 2016. The environmental, 
archaeological and historical evidence for regional 
climatic changes and their societal impacts in the 
Eastern Mediterranean in Late Antiquity. 
Quaternary Science Reviews. Volume: 136, 

Pages: 189-208. DOI: 
10.1016/j.quascirev.2015.07.022  

Khazaei, B., Khatami, S., Alemohammad, 
S.H., Rashidi, L., Wu, S., Madani, K., Kalantari, Z., 
Destouni, G., Aghakouchak, A., 2019. Climatic or 
regionally induced by humans? Tracing hydro-
climatic and land- use changes to better 
understand the Lake Urmia tragedy. J. Hydrol. 
(Amst) 569, 203–217. 
https://doi.org/10.1016/j.jhydrol.2018. 12.004.  

Kloog, I., Koutrakis, P., Coull, B.A., Lee, H.J., 
Schwartz, J. 2011. Assessing temporally and 
spatially resolved PM2.5 exposures for 
epidemiological studies using satellite aerosol 
optical depth measurements. Atmospheric 
Environment. Volume 45, Issue 35, November 
2011, Pages 6267-6275. 
https://doi.org/10.1016/j.atmosenv.2011.08.066  

Lee, H.J., Liu, Y., Coull, B.A., Schwarts, J., 
Koutrakis, P. 2011. A novel calibration approach of 
MODIS AOD data to predict PM2.5 
concentrations. Atmos. Chem. Phys., 11, 7991-
8002, 2011 https://doi.org/10.5194/acp-11-7991-
2011  

Nordio, F., Kloog, I., Coull, B.A, Grillo, P., 
Bertazzi, P.A., Baccarelli, A.A., Schwartz, J. 2013. 
Estimating spatio- temporal resolved PM10 
aerosol mass concentrations using MODIS 
satellite data and land use regression over 
Lombardy, Italy. Atmospheric Environment. 
Volume 74, August 2013, Pages 227-236. 
https://doi.org/10.1016/j.atmosenv.2013.03.043  

Satgé, F.; Espinoza, R.; Zolá, R.P.; Roig, H.; 
Timouk, F.; Molina, J.; Garnier, J.; Calmant, S.; 
Seyler, F.; Bonnet, M.- P. Role of Climate 
Variability and Human Activity on Poopó Lake 
Droughts between 1990 and 2015 Assessed 
Using Remote Sensing Data. Remote Sensing. 
2017, 9, 218. doi:10.3390/rs9030218  

Soni, M., Payra, S., Verma, S. 2018. 
Particulate matter estimation over a semi arid 
region Jaipur, India using satellite AOD and 
meteorological parameters. Atmospheric Pollution 
Research Volume 9, Issue 5, September 2018, 
Pages 949-958. 
https://doi.org/10.1016/j.apr.2018.03.001  

Sotoudeheian, S., Salim, R., Arhami, M., 
2016. Impact of Middle Eastern dust sources on 
PM10 in Iran: Highlighting the impact of Tigris-
Euphrates basin sources and Lake Urmia 
desiccation. Journal of Geophysical Research: 
Atmospheres. Volume121, Issue23, Pages 



Presented at the 19th Annual CMAS Conference, Chapel Hill, NC, October 26-28, 2020 

6 

14,018-14,034. 
https://doi.org/10.1002/2016JD025119  

Urmia Lake Restoration Program 
(ULRP).2019. http://www.ulrp.ir/en/. (Accessed 10 
May 2019)  

United Nations Environment Programme 
(UNEP). 2012. The Drying of Iran's Lake Urmia 
and its Environmental Consequences. 
Environmental Development 2 (2012) 128-137. 
https://x.doi.org/10.1016.j.envdes.2012.03.11  

You, W., Zang, Z., Zhang, L., Li, Z., Chen, D., 
Shang, G. 2015. Estimating ground-level PM10 
concentration in northwestern China using 
geographically weighted regression based on 
satellite AOD combined with CALIPSO and 
MODIS fire count. Remote Sensing of 
Enrironment, Volume 168, Pages 276-285. 
https://doi.org/10.1016/j.rse.2015.07.020  

Zarghami, M., 2011. Effective watershed 
management; case study of Urmia Lake, Iran. 
Lake Reserv. Manag. 27, 87– 94. 
https://doi.org/10.1080/07438141.2010.541327.  

 
 


