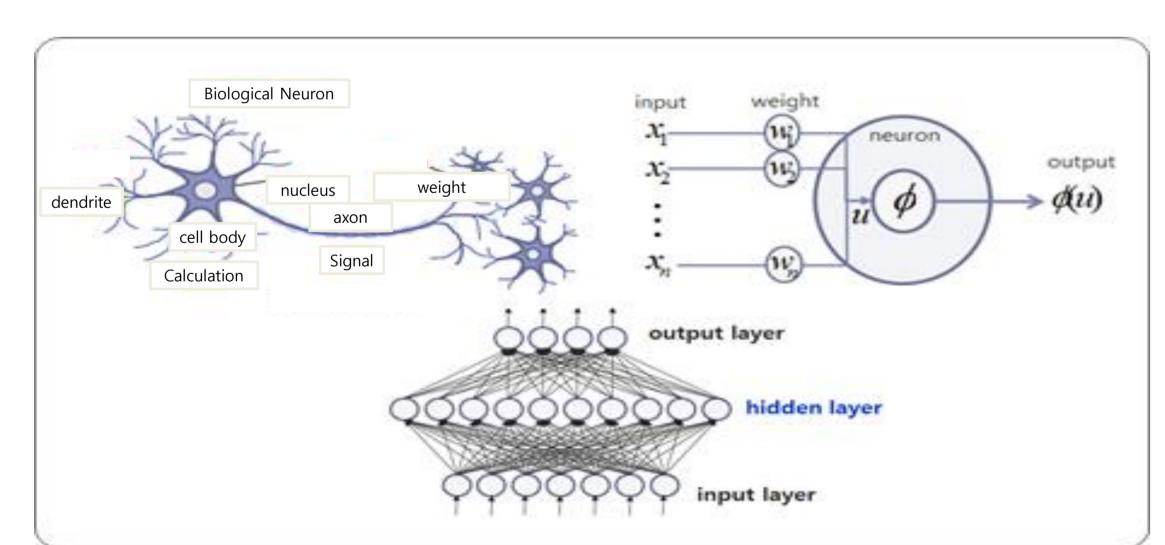


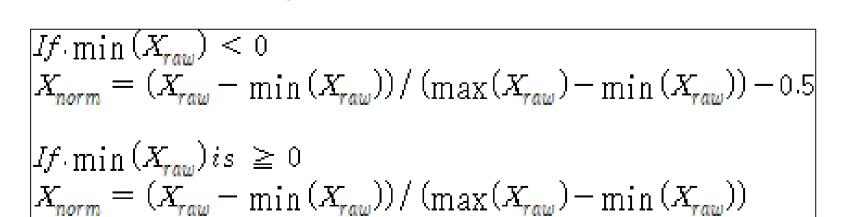
Development of PM_{2.5} short-term forecast model using Artificial Intelligence – Focused on Seoul.

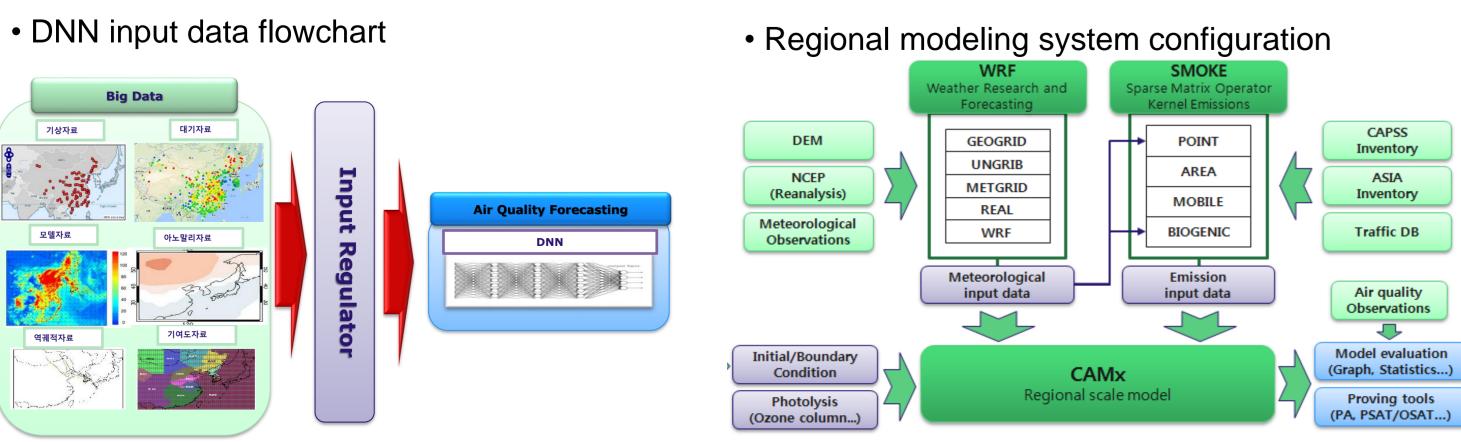
Jeong-Beom Lee¹⁾, Geon-Woo Yun¹⁾, Youn-Seo Koo¹⁾, Hui-Young Yun¹⁾, Dae-Ryun Choi¹⁾, Ji-Seok Koo²⁾

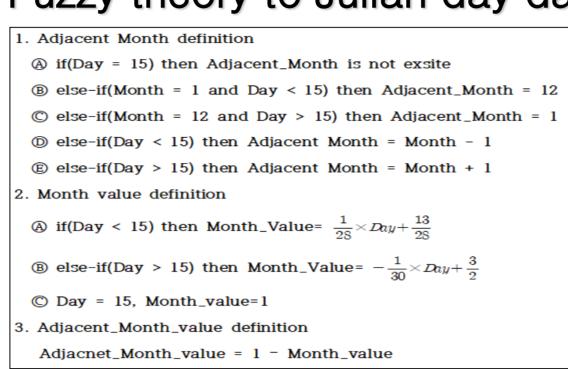

¹⁾Dept. of Environmental & Energy Eng., Anyang University, Anyang, Korea, ²⁾Enitech Co.,Ltd

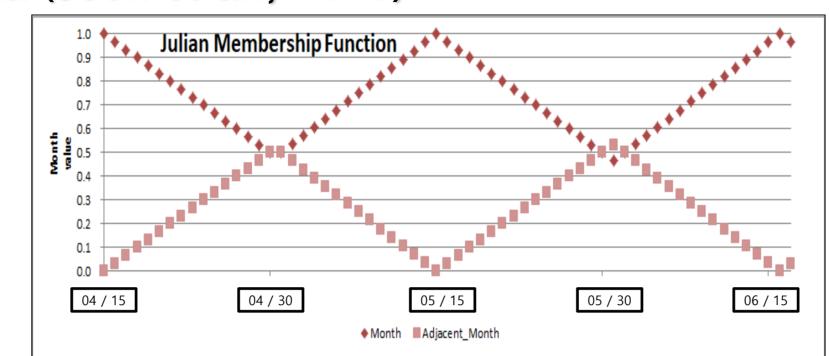
Introduction

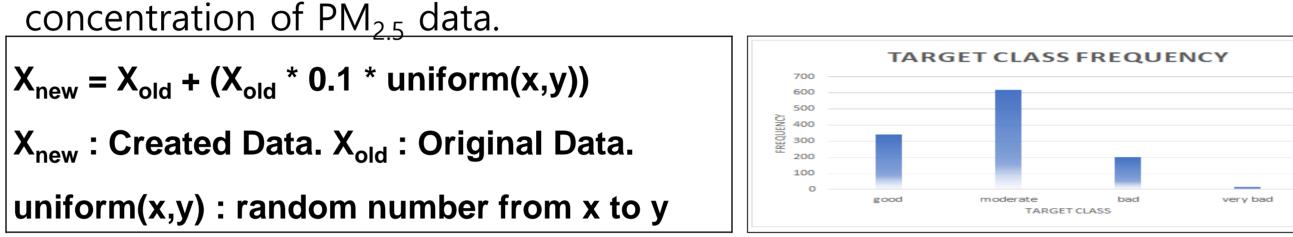
- Forecasting model performance for PM_{2.5} using chemical transport model is often overestimated compared to the measurements (Koo et al, 2008; 2012; 2015, Choi et al, 2018;2019) in Korea.
- In odor to improve model performance for PM_{2.5} forecasting, we developed PM forecasting system using artificial intelligence with big data such as air quality and weather observations as well as forecasting model data.
- It is important to number of high concentration of PM_{2.5} data to accurately predict the episode. However, the number of high concentration of PM_{2.5} data is insufficient. Therefore we created the data to improve model performance using AI for accuracy of high concentrations events of PM_{2.5}.
- We analyzed developed AI forecasting PM_{2.5} model performance for 3-days in Seoul.


Methodology


- Deep Neural Network
- The artificial intelligence technique used DNN(Deep Neural Network).
- DNN is an extended model that includes multiple hidden layers between the input and output layers to enable deep learning in existing ANN.
- The calculation of weights and biases between layers is key.


- DNN input data
- Observed data is meteorological and six air pollutants(PM₁₀, PM_{2.5}, O₃, NO₂, SO₂, CO).
- Numerical model value, WRF weather forecasts, Anomaly, Cosine similarity, Back trajectory, Contribution, Julian day were used.
- The input data used for learning is normalized.

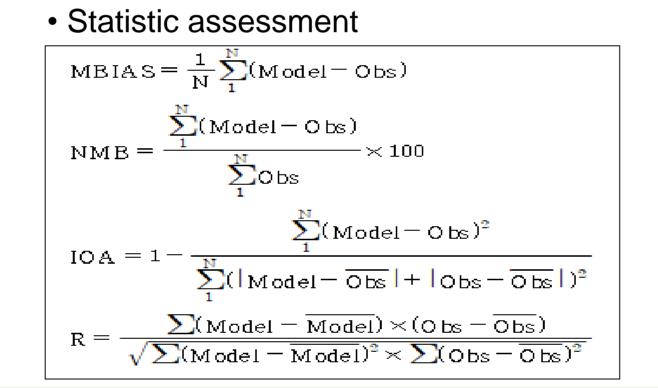

Normalization equation



Fuzzy theory to Julian day data (Jeon et al., 2018)

- Data Creation method
- Most observed PM_{2.5} data are Good and Moderate.
- Learning is not done properly because the data is not balance.
- Therefore, data creation method is implemented to create sufficient high

Model performance evaluation method


 $= \frac{\text{IV}}{(\text{III} + \text{IV})} \times 100(\%)$

 $= \frac{(11+1\Lambda)}{(11)} \times 100(\%)$

- Change the concentration value of PM_{2.5} to the index value.
- Reference : http://www.airkorea.or.kr/

	• []	ndex as	ssess	sme	ent							
		Column		Forecatsed								
		Column	Good		Moderate	Bad	Very Bad					
	0	Good	al		bl	cl	dl					
	В	Moderate	a2		b2	c2	d2					
	S	Bad	a3		b3	c3	d3					
	3	Very Bad	a4		b4	c4	d4					
			I:[, П:	, III:	, IV:					
		Method		Equation								
		Accuracy (A	()	$= \frac{(a1+b2+c3+d4)}{N} \times 100(\%)$								
()		HIT rate (HI	T)	$= \frac{(c3 + d4)}{(III + IV)} \times 100(\%)$								
	Pro	bability of De	tection	$=\frac{IV}{V}\times 100(\%)$								

False Alarm Rate

Results and Discussion

Results of model performance evaluation (not create data (Standard model))

				_{2.5} vs AI PM ₂ sessment	.5			_{2.5} vs AI PM _{2.} ssessment	5
Model name	Day	ACC	HIT	POD	FAR	МВ	NMB	IOA	R
	D+0	72.22	63.47	73.17	21.05	-0.09	-2.71	0.93	0.91
Standard	D+1	71.43	52.27	70.45	16.22	-2.96	-8.57	0.86	0.90
	D+2	65.87	51 16	69 77	28 57	-2.66	-7 73	0.82	0.85

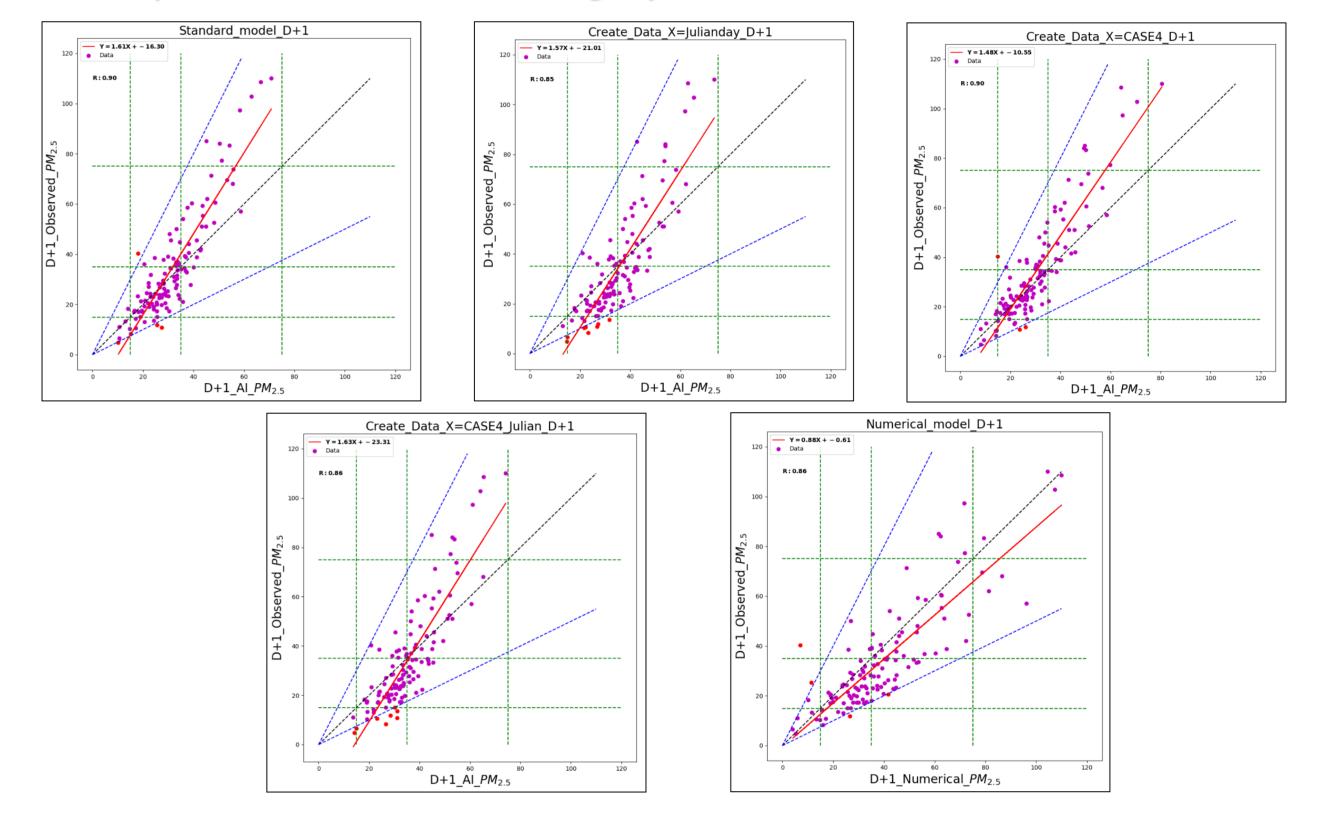
Results of model performance evaluation (Create data(X_{old} = Julian day))

		·		_{2.5} vs AI PM _{2.} sessment	5	Observed PM _{2.5} vs AI PM _{2.5} Statistic Assessment				
Model name	Day	ACC	HIT	POD	FAR	MB	NMB	IOA	R	
Create Data	D+0	70.63	65.85	78.05	20.00	0.48	1.43	0.94	0.90	
(Standard value	D+1	64.29	63.64	81.82	33.33	0.81	2.37	0.83	0.85	
Julian day)	D+2	57.14	60.47	79.07	43.33	1.21	3.52	0.79	0.77	

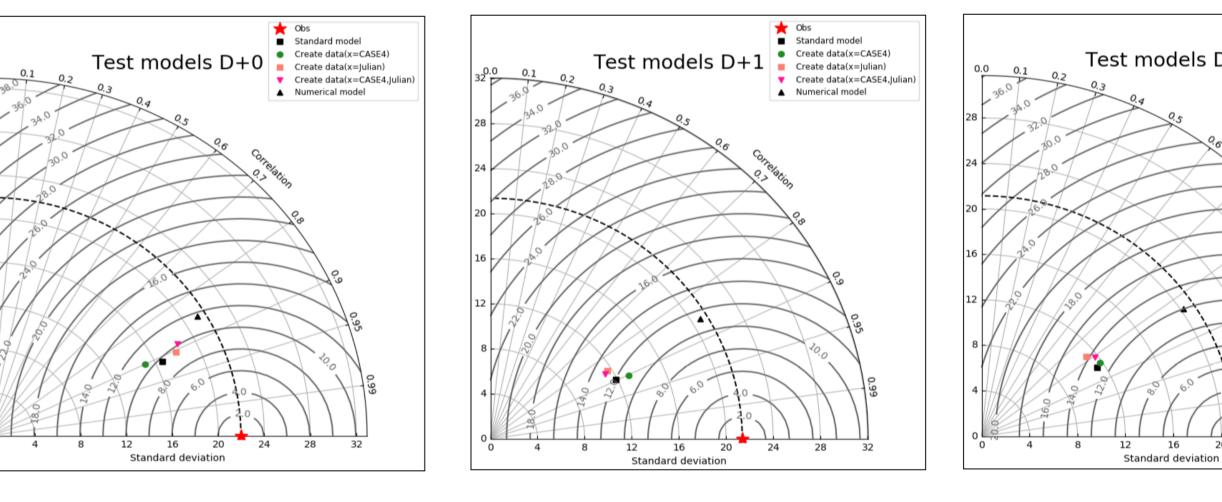
Results of model performance evaluation (Create data(X_{old}=numerical_PM_{2.5}))

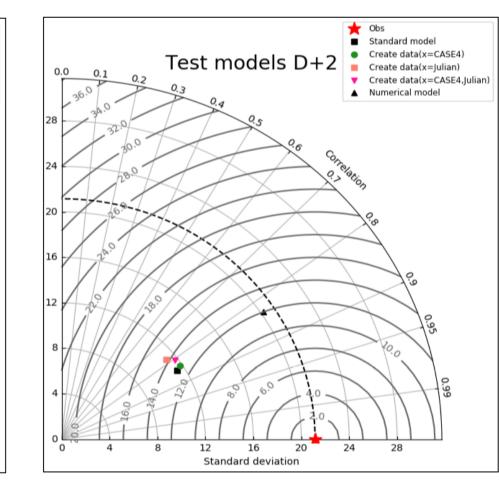
								5	
Model name	Day	ACC	HIT	POD	FAR	МВ	NMB	IOA	R
Create Data	D+0	73.02	68.29	82.93	22.73	0.29	0.89	0.91	0.89
(Standard value	D+1	74.60	50.00	65.91	6.45	-4.07	-11.82	stic Assessment IB IOA R 9 0.91 0.89 82 0.87 0.90	0.90
'Numerical PM _{2.5} ')	D+2	66.67	46.51	65.12	24.32	0.29 0.89 0.91 -4.07 -11.82 0.87	0.83		

Results of model performance evaluation (Create data)


 $(X1_{old} = Julian day // X2_{old} = Numerical PM_{2.5})$

		(Observed PM Index As	_{2.5} vs Al PM _{2.} sessment	5	Observed PM _{2.5} vs AI PM _{2.5} Statistic Assessment				
Model name	Day	ACC	HIT	POD	FAR	MB	NMB	IOA	R	
Create Data	D+0	70.63	75.61	82.93	24.44	2.60	7.84	0.93	0.88	
(Standard value 'Numerical	D+1	65.08	61.36	79.55	31.37	0.89	2.58	0.83	0.86	
PM _{2.5} '&Julian day)	D+2	59.52	60.47	79.07	39.29	0.68	1.98	0.81	0.80	


Results of model performance evaluation compared to numerical model


		Obse	Index As	s Numerical i sessment	PIVI _{2.5}	Statistic Assessment				
Model name	Day	ACC	HIT	POD	FAR	MB	NMB	IOA	R	
	D+0	64.29	68.29	85.37	33.96	3.84	11.58	0.92	0.86	
Numerical Model	D+1	61.11	68.18	86.36	39.68	5.23	15.18	0.91	0.86	
	D+2	60.32	65.12	79.07	43.33	4.60	13.37	0.90	0.83	

Comparison of correlation graphs in test models – Focused D+1.

Comparison of Taylor-diagram

Conclusions

- All results showed ACC increased and FAR decreased compared with numerical mode because AI tend to reduce overestimation of PM_{2.5} of a numerical model.
- In D+0, the POD index of AI models with created high concentration of PM_{2.5} events data is increased and ACC and FAR are similar compared with standard model.
- In D+1, the POD and FAR index of Al models with created high concentration of PM₂₅ events data using Julian-day or Julian-day&Numerical-PM₂₅ are increased, but ACC is decreased compared with standard model.
- ■The results of comparisons in various aspects in this study suggest that developed Al forecast model is able to replace numerical model for air quality PM₂₅ forecasting in Seoul
- We believe further studies with development of data created method are necessary to improve performance of AI model.

Acknowledgements

This subject is supported by the National Institute of Environmental Research.