Mapping Global Surface Ozone Concentrations through the Statistical Fusion of Observations and Models
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INTRODUCTION

We estimated global surface ozone concentrations by fusing ozone measurements and global

s the following:

- Tropospheric ozone is an EPA criteria pollutant known to be detrimental to health.
- The Global Burden of Disease (GBD) Assessment estimated 472,000 deaths from ambient

ozone pollution in 2017 [1].

- GBD requests fine resolution global surface ozone estimations for 1990-present.

- Ozone measurements are common in North America, Europe, and Japan, but other regions
have very few measurements.

- Models provide information on ozone levels in data sparse regions, but model predictions

are inaccurate.

To map ozone for the forthcoming GBD-2019, we improve upon the previous methods used for

GBD-2017 [2] by:

- Estimating global surface ozone for each year from 1990-2017

- Adding new observations in

China

- Using the Bayesian Maximum Entropy method for space-time data fusion
- Adding fine spatial structure

METHODS

We produce global ozone maps annually for the maximum six month average of the daily
maximum eight hour average, or mda8 (in ppb):
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Modeled ozone concentrations were used from the following models, many from the

Chemistry-Climate Model Initiative (CCMI)[4] : CHASER (1990-2010), MOCAGE (1990-2016),
MRI-ESM (1990-2017), MERRA2-GMI (1990-2017), NCAR CESM-Chem (1990-2010), NCAR

WACCM (1990-2010), GFDL AM3 (1990-2014), and GFDL AM4 (2010-2016). Using the
M3Fusion method, models were weighted in each region to minimize the difference between
the bias-corrected multi-model average and observations:

Let S, be the grid cell at resolution 0.5° x 0.5°, y(s g) be the interpolated observations, {n, (s g) k
n} be the model output registered onto the same grid from the n models available in

=1,...,

a given year. ar is a constant that allows adjustment to the overall (regional) underestimation
or overestimation and 8, is an optimal weight for the k-th model in region r [2].
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Bayesian Maximum Entropy Framework

BME is a geostatistical modeling tool that we use to estimate of
ozone pollution by combining site specific observations with
modeled concentrations using the correlations between

measurement locations. BME also estimates a variance, which
assesses estimation confidence spatially. The steps are:
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Let Z(p) be a field of ozone concentration estimations in space and time
Assign the M>Fusion output as the “global offset”: go(p)
Remove global offset from measurements (hard data), z_, to obtain residuals x, =z _-go(p, ).

Model the covariance (the correlation between locations in space and time) ¢ _based on the residuals x .
Combine hard data residuals (x, ), covariance (c ), and estimation parameters to get the BME estimation (x, )

Obtain final values (z,) by adding back the global offset go(p, ) to BME estimation (x ).

and Variance v,

For the theory, derivation, and details of BME, see Christakos 1990 [5].
Implemented with BMEIib [6].

z — go(p,) : Estimation
Hard Date, z, h s Ha_rd Data - Covariance, ol
Observations Residuals, x, C, » Pk
N ~
R\ »
M3Fusion as go(p,) + X, BME
Global Offset, go ng Estimate, x,
BME Mean z,

METHODS

Covariance

The covariance in space and time is calculated from ozone observations:
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where ¢, is the covariance (ppb?),r is the spatial lag (degrees), and 7 is the temporal lag (years). The covariance is used to

give the range of influence of a measurement to predict other concentrations. The spatial covariance, and therefore the spatial
influence of an observation, drops off steeply at one degree. The temporal covariance, however, remains high, meaning that
observations can influence ozone estimates over several years.

Fine Resolution

Most models used are approximately 2° resolution, but finer
resolution is required for GBD. We add fine spatial resolution

using estimates from the NASA G5NR-Chem model [7] at
0.125° resolution for July 2013 to June 2014. We regridded this 2

to 0.1° resolution and used it to provide fine spatial patterns,
keeping the average of each 0.5° grid cell from the BME
output, for each year 1990-2017.
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Cross Validation

Leave one out cross validation was performed for the following:
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Space Only Correction: BME mean estimate allowing
observations to correct M3Fusion Model across space
Space Time Correction: BME mean estimate allowing
observations to correct M*Fusion Model across space and time
Fine Resolution: Space time corrected M*Fusion Model with the

fine resolution spatial pattern of the NASA G5NR-Chem model

Scenario MSE (ppb?) |R?(ppb?)
Multimodel Mean 189.2331 0.2814
M3Fusion Model 61.1408 0.2996
Space Only Correction 31.1659 0.6301
Space Time Correction 15.7267 0.8163
Fine Resolution 30.0853 0.6399

Fine resolution results
are shown for a single
0.5° grid cell over

Charlotte, NC in 2005.
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FUTURE WORK

Constant Air Quality Model Performance

The M3Fusion output can be directly evaluated using observations, in which each modeled
value is given a variance based on how well the model matches observations (a lower variance
Is weighed higher in the final estimation). CAMP also removes model bias by basing new mean
offset values on both models and observations. [8]

1) Match station measurement values (observations)
with model estimations at each measurement
location in space and time
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Regionalized Air Quality Model Performance

Using the Regionalized Air Quality Model Performance (RAMP) method [9] would account for
non-homogeneity in model performance across space, which could provide better model
correction in data sparse areas.

CONCLUSION

We successfully created global surface ozone estimations for 1990-2017 at fine resolution with
the following features:

- Observations were combined with models that are bias corrected and weighted
based on their performance.

- Observations take precedence in estimation near observation locations, but BME
weight falls off based on covariance and space/time distance

- Observations not only correct the model in the year they were observed, but also
influence other years according to the temporal covariance. This is important for
regions that were not monitored every year over the entire 1990-2017 time period,
such as China.

- The spatial and temporal corrections greatly reduce MSE and improve R2.

- The BME method provides a variance for each ozone estimation based on space/time
distance from observations.

- The fine spatial structure of the final product follows the spatial distribution of the
0.125° NASA G5NR-Chem model.

Annual results at 0.1° resolution were submitted for the 2019 Global Burden of Disease
Assessment.
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