
METHODS
We produce global ozone maps annually for the maximum six month average of the daily 
maximum eight hour average, or mda8 (in ppb):
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RESULTS

FUTURE WORK
Constant Air Quality Model Performance 
The M3Fusion output can be directly evaluated using observations, in which each modeled 
value is given a variance based on how well the model matches observations (a lower variance 
is weighed higher in the final estimation). CAMP also removes model bias by basing new mean 
offset values on both models and observations. [8]

METHODS

1) Match station measurement values (observations) 
with model estimations at each measurement 
location in space and time

2) Sort each paired value into 10 equally sized bins and 
calculate 𝛌1=mean and 𝛌2=variance of observations 
in each bin:

3) Find 𝛌1 and 𝛌2 for each model point, using three 
years of data to create the 𝛌s for a given year  

Covariance
The covariance in space and time is calculated from ozone observations:
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Mapping Global Surface Ozone Concentrations through the Statistical Fusion of Observations and Models 

INTRODUCTION
We estimated global surface ozone concentrations by fusing ozone measurements and global 
models. Our motivation includes the following:
- Tropospheric ozone is an EPA criteria pollutant known to be detrimental to health.
- The Global Burden of Disease (GBD) Assessment estimated 472,000 deaths from ambient 

ozone pollution in 2017 [1].
- GBD requests fine resolution global surface ozone estimations for 1990-present.
- Ozone measurements are common in North America, Europe, and Japan, but other regions 

have very few measurements.
- Models provide information on ozone levels in data sparse regions, but model predictions 

are inaccurate.

To map ozone for the forthcoming GBD-2019, we improve upon the previous methods used for 
GBD-2017 [2] by:
- Estimating global surface ozone for each year from 1990-2017
- Adding new observations in China
- Using the Bayesian Maximum Entropy method for space-time data fusion
- Adding fine spatial structure 

Bayesian Maximum Entropy Framework

1. Let Z(p) be a field of ozone concentration estimations in space and time
2. Assign the M3Fusion output as the “global offset”: go(p)
3. Remove global offset from measurements (hard data), zh, to obtain residuals xh=zh-go(ph). 
4. Model the covariance (the correlation between locations in space and time) cx based on the residuals xh. 
5. Combine  hard data residuals (xh), covariance (cx), and estimation parameters to get the BME estimation (xk)
6. Obtain final values (zk) by adding back the global offset go(pk) to BME estimation (xk).

CONCLUSION
We successfully created global surface ozone estimations for 1990-2017 at fine resolution with 
the following features:

- Observations were combined with models that are bias corrected and weighted 
based on their performance.

- Observations take precedence in estimation near observation locations, but BME 
weight falls off based on covariance and space/time distance

- Observations not only correct the model in the year they were observed, but also 
influence other years according to the temporal covariance. This is important for 
regions that were not monitored every year over the entire 1990-2017 time period, 
such as China.

- The spatial and temporal corrections greatly reduce MSE and improve R2.
- The BME method provides a variance for each ozone estimation based on space/time 

distance from observations.
- The fine spatial structure of the final product follows the spatial distribution of the 

0.125° NASA G5NR-Chem model.

Annual results at 0.1° resolution were submitted for the 2019 Global Burden of Disease 
Assessment. 
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Scenario MSE (ppb2) R2 (ppb2)

Multimodel Mean 189.2331 0.2814

M3Fusion Model 61.1408 0.2996

Space Only Correction 31.1659 0.6301

Space Time Correction 15.7267 0.8163

Fine Resolution 30.0853 0.6399

BME is a geostatistical modeling tool that we use to estimate of 
ozone pollution by combining site specific observations with  
modeled concentrations using the correlations between 
measurement locations. BME also estimates a variance, which 
assesses estimation confidence spatially. The steps are: 

Most models used are approximately 2° resolution, but finer 
resolution is required for GBD. We add fine spatial resolution 
using estimates from the NASA G5NR-Chem model [7] at 
0.125° resolution for July 2013 to June 2014. We regridded this 
to 0.1° resolution and used it to provide fine spatial patterns, 
keeping the average of each 0.5° grid cell from the BME 
output, for each year 1990-2017.

Observations
Ozone measurements were obtained from the 
Tropospheric Ozone Assessment Report 
(TOAR) for 1990-2017 and the China National 
Environmental Monitoring Center (CNEMC) 
Network for 2013-2017 [3]. In total, there were 
8,834 monitoring sites over the time period, 
with a minimum of 1,199 stations in 1990 and 
a maximum of 4,999 stations in 2015.

M3Fusion Model 
Modeled ozone concentrations were used from the following models, many from the 
Chemistry-Climate Model Initiative (CCMI)[4] : CHASER (1990-2010), MOCAGE (1990-2016), 
MRI-ESM (1990-2017), MERRA2-GMI (1990-2017), NCAR CESM-Chem (1990-2010), NCAR 
WACCM (1990-2010), GFDL AM3 (1990-2014), and GFDL AM4 (2010-2016). Using the 
M3Fusion method, models were weighted in each region to minimize the difference between 
the bias-corrected multi-model average and observations:

Let sg be the grid cell at resolution 0.5° × 0.5°, ŷ(sg) be the interpolated observations, {ηk(sg); k 
= 1, . . . , n} be the model output registered onto the same grid from the n models available in 
a given year. αr is a constant that allows adjustment to the overall (regional) underestimation 
or overestimation and βrk is an optimal weight for the k-th model in region r [2].  

where     is the covariance (ppb2),    is the spatial lag (degrees), and    is the temporal lag (years). The covariance is used to 
give the range of influence of a measurement to predict other concentrations. The spatial covariance, and therefore the spatial 
influence of an observation, drops off steeply at one degree. The temporal covariance, however, remains high, meaning that 
observations can influence ozone estimates over several years. 

Fine Resolution

Spatial Covariance Temporal Covariance

1995 2005 2015

Fine resolution results 
are shown for a single 
0.5° grid cell over 
Charlotte, NC in 2005. 

A M3 model value of 55 
ppb in 2005 would give: 

𝛌1≈ 49 ppb
𝛌2≈ 112 ≈121

Regionalized Air Quality Model Performance 
Using the Regionalized Air Quality Model Performance (RAMP) method [9] would account for 
non-homogeneity in model performance across space, which could provide better model 
correction in data sparse areas.

For the theory, derivation, and details of BME, see Christakos 1990 [5]. 
Implemented with BMElib [6].
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CAMP Analysis for 2004-2006

CAMP Variance (𝛌2)  2005CAMP Mean (𝛌1)  2005

Cross Validation
Leave one out cross validation was performed for the following:
- Multimodel Mean: Equally weighted mean of all available 

models in each year
- M3Fusion Model: Bias corrected, observation weighted mean of 

all available models in each year
- Space Only Correction: BME mean estimate allowing 

observations to correct M3Fusion Model across space
- Space Time Correction: BME mean estimate allowing 

observations to correct M3Fusion Model across space and time
- Fine Resolution: Space time corrected M3Fusion Model with the 

fine resolution spatial pattern of the NASA G5NR-Chem model 


