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ESTIMATING ACUTE HEALTH IMPACT

INTRODUCTION MAPPING PM, 5

Beginning October 8-9, 2017, a sertes of wildfires in N. California resulted in: Objective Objective
PM, s concentrations reaching highest levels recorded to date in CA BEvaluate the accuracy of four different methods for mapping daily average PM, 5 during the Oct. 2017 Using PM, 5 observations fused with CC-CMAQ), estimate the respiratory and cardiovascular hospital
o L . wildfires using available data: observed, modeled, & satellite AOD-estimated PM, s concentrations admissions attributable to PM., - from the Oct. 2017 fires
* ~7.2 million people living in the Bay Area exposed to unhealthy air 25
Since smoke from this fire Methods . . Methods
affected a large population, it is 2 steps were used to prepare the modeled and AOD-estimated PM, 5 concentrations: The rate of respiratory and cardiovascular hospital admissions attributable to PM, 5 from the fires,

2

1. Conversion of MODIS AOD to PM, s using a simple linear regression given a log-linear relationship, is: AY = Y(t) * (1 — e F X (5,8)=Xo(s,£))

2. Constant Air Quality Model Performance (CAMP)°-correct CMAQ (CC-CMAQ) model & AOD- * Y(t) - baseline county-level cardiovascular/respiratory admission rate
estimated PM, - (CC-Sat) o (1 — e BEGED=X(0)) _ gttributable fraction

« X(s,t) - mean PM, - concentration at a s/t location

Xy (s, t) - background concentration of PM, s at a s/t location

necessary to accurately estimate
the extent of the air quality and
health impacts of the fires.

Geostatistical methods exist to CAMP Method: corrects errors in estimations by modeling the mean (A;) and variance (A,) of observed

correct and combine modeled value as a function of estimated value, accounting for nonlinearity and heteroscedasticity?

and observed concentrations to _ , . . e g =_MRR) pp 1 ocnital admission. ncentrationr nse function
estimate air quality?, but have g .. L Using the Bayesian Maximum Entropy (BME) Framework, 4 mapping methods were evaluated B=1% ug/m3’ ospital admission-PM, 5 concentration-tesponse functions
. . Img 1. Satellite imagery of the wildfire smoke on October 8 and 9, & compared using Mean Squared Error (MSE) and R? values from cross-validations: Monte-Carlo simulations of ff were used to obtain AY estimates. The AY estimates were combined with
not been apphed to wildfires. 2017 (source: NOAA) . . . . . . o
1. Space/time (s/t) BME kriging on log-PM, s obs census tract-level population data to estimate the daily respiratory and cardiovascular hospital admissions.
This research has 2 primary goals: , '
PERAIY & 2. Fusion of CC-CMAQ & log-PM, ; obs Results
1. Ewvaluate different methods for accurately mapping PMZ.S during the Oct. 3. Fusion of CC-Sat & log PM. . obs ® Observation | = C U TUUUETT L e CR)ardipv?scular
. : : ‘ - iVl s | . ol - — Respiratory
2017 wildfires, fusing together observed, modeled, and satellite AOD- , - ~ Mean Trend * Between Oct. 6 - 20, we estimate 234 people were iy
. . 4. Fusion of CC-CMAQ, CC-Sat, & log-PM, 5 obs £ ~ CC-CMAQ/Sat , , , , ’os
estimated PM, 5 concentrations | E, CC-CMAQ/Sat admitted to the hospital for respiratory illness and 214 250 LA
. . ] . . = +/- Std. Dev. . @ b \
2. Use PM, ; estimates to evaluate the acute health impact of the Oct. 2017 BME Framework: estimates PM, 5 at unmonitored i — BME Estimation people for cardiac causes due to the fires £l 1 ¥
=3 . . . o . . .. : : . < 1
fires, specifically the attributable respiratory and cardiovascular admissions locations, using geostatistics to combine site-specific & - - . 3 i 1
A5 * Highest rates of admission occurred in densely populated a | ! |
- L will 1l L bealth endooints & boll and general knowledge™”. Treats observed PM, 5 data S | g ; ) g
uture work will extend this approach to more health endpoints ollutants. . - o | Frn,
pPp p p as hard, CMAQ/AOD data as soft*. Soft data (\) with agea§ Wlth high PM, 5 levels from tlclie ﬁre;, czgrchovzscular : | : 3 /,} A
2 } \
lower variance (A,) have more influence. Influence of Space (degrees) admissions wete more concentrated north of Bay Area £ ¢ 8 4 .
DATA hard data decreases with distance given s/t correlation®. * Our estimated 105 total cardiovascular and respiratory £ ¥ )
Fig. 2. Example od the BME Method ] o i 3
S hospital admissions by Oct. 10 are comparable to the 185 S }
PM_ s Data - Results dmissi d by local 3 hospitals by O \
To map air quality during the wildfires, 3 PM, 5 datasets were used: Oct. 9 e - - - : ACHISSIONs repotted by focal fews at 2 hospitals by et s @ o w w
O map air quality during W ) 2.5 WEIe used: “ar ‘ * Fusing observations with CC-CMAQ provides most 10 © Day, October 2017
1. Surface observations from: | | i 3 accurate PM, ; estimate — used for acute health impact Cardi \ Respirator Fig. 6. Daily respiratory and cardiovascular admissions
- 114 EPA FRM/FEM monitoring stations across California, 'S . . . araiovascuiar piratory during the fires, Oct. 6 - 20
, , s = - Adds knowledge of atmospheric chemistry & physics Admissi Admissions
Oct. 1 — 31 (EPA’ air quality database) s S . . . . missions o 1
. , , , g > - Better estimates PM, s 1f >35 miles from a station @ ef ] Future Work
- 49 temporary monitoring stations across California, Oct. 1 — 31 8 g Eusing CC-Sat with ob , 1 COC oct.10 K- . Oct. 10 Q§-
. o w2 ® Fusin -dat with observations an -CMA ' ' '
(US Forest Service) ol - ; 8 e bor o] Q . * Integrate finer resolution health data
performs similarly but slightly worse e into assessment, using a temporally-
2. Estimates from Community Multiscale Air Quality (CMAQ) model in “r e - .| 0 Fos . L D
. . . y Q y( Q) ol 65 - May require better AOD—2PM, ;5 conversion s vy 3. specific baseline admission rate, Y (t)
the Central California region at a 4-km resolution from Oct. 3 — 20 . . . N .
. . .y . L o Space/time BME kriging on observations produces most 0 Tl “: * Further improve accuracy of
(Bay Area Air Quality Management District (BAAQMD)) 12412 2 2 R0 S S 17 e s s , . , , " back i . .
accurate estimates at monitoring station locations | ackground concentration estimate
3. Satellite-based estimates from Moderate Resolution Imagin R & . . . . . ) : : M A
Spectroradiometer (MODIS) Terra Satellite Acrosol Ogticfl Denth “ Oct. 10 |l Fires had clear impact on air quality reaching PM, s levels it L e = 1N outside bpunds of CMAQ model
P p p 41 u 1 dangerous to human health <dally avg. PM25 >165 ug/m3> 124 123 122 21 I:;rfgitu;;?deé;m -17 116 115 -114 124 123 <122 -121 L—;ﬁgitug;s(adeg-;m 17 116 -115 -114 i PeffOi'm lmpaCt assessment on
(AOD) data, Oct. 1 — 31 (NASA) 4 | . as additional health outcomes over
- o ue—— ) al . ——{hs entire fire period
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Fig. 1. Estimates of PM, s surface concentrations on Oct. 10 from (Left) FRM & temporary stations, (Middle) 032 )
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BAAQMD CMAQ model, and (Right) MODIS Terra Satellite AOD Data st ] s | s} matter distributions in North Carolina. Amospheric Environment, 34(20), 3393
41 OCt- 1 1 | -, osl >/ ] |—Obs * - l A I 5, 326 S, et al. (2012). Comparison of geostatistical interpolation and remore
Hospital Admission Data | |—Oobs+cc-omaQ 3 ISR, uvuttl | A . ot 11 B TS
To estimate attributable hospital admissions, the following data were used: s 01 8 | :83: : gg:gﬁp@ + CC-Sat ) ST e ) T 6 ipttdfaﬂz)(zg?;_ﬁlmiu say at least 185 treated for injurics.
- 2.07% (95% CI, 1.20% - 2.95%) 1 in respiratory, 1.89% (95% CI, 1.34% - ["#§  Fig 4. MSE and R* based on distance from monitoring stacons ) cc-cMaa B . ccSats B Acknowledgements
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2.45%) 1 in cardiovascular hospital admissions per 10 ug/m?> 1 in PM, 5! Special thanks to NASA HAQAST
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2. County-level hospital admission rates for respiratory illness & cardiac o4 | S/T BME Kriging on Obs 0.139 0.740 Tiger Team for funding, Susan
causes across CA for 2017 (EPA Benefits Mapping and Analysis Program) 3 1 Fusion, Obs + CC-CMAQ 0.144 0.730 O’Neill & Minghui Diao for leading
: : G2 -z 2z a0 9 A a7 e 15 1a i + CC- 1 71 N N the Tiger Team, & BAA for
3. Percent PM, ; attributable to fires, used to estimate background PM, . S egdewen) Fusion, Obs + CC-Sat 0156 0710 B el |8 IR sl | - gd | ’ Q
: . ' : - . . Fusion, Obs + CC-CMAQ + CC-Sat 0.155 0.717 - gy T e e the model runs
concentration, from CMAQ model w/ and w/o fire emissions (BAAQMD) Fig. 3 PM, 5 estimates, Oct. 10 -12, using the fusion of usion, Obs Q a oo o

CC-CMAQ and observations Table 1. Results from leave-one-out cross validation Fig. 5. Comparison of 4 PM, ;5 estimation methods, Oct. 10, 2017



