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1. Background 3. CMAQ simulations for summer/winter months January 2011
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« Many CTMs include only a simple representation of in-cloud chemistry,
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e Over the last decade much research has gone into characterizing SOA
chemistry in the aqueous phase of cloud droplets and wet aerosols June 2013

e CMAQ’s AQCHEM-KMT cloud chemistry module is well-suited for
Incorporating additional chemistry in clouds and investigating its impact
on modeled concentrations
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2. Cloud chemistry updates
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Existing CMAQ cloud chemistry: AQCHEM-KMT! includes S(IV) to S(VI)
oxidation via 5 pathways (i.e., H,0,, O;, O, catalyzed by Fe3*/Mn?*,
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CH;0O0H, CH,C(O)OOH) and yield-based SOA formation from glyoxal and i . 3_0“9’i3 S T e

methylglyoxal. AQCHEM-KMTI also includes SOA formation from biogenic i L 2 s Figure 3. % change in January average (a) sulfate, (b) nitrate, (c) HOx, and (d) HNO,

epoxides. The Kinetic PreProcessor (KPP)? is used to generate the solver s | (New — Base). Average O,, HCHO, and NOx saw only small impacts over CONUS.

and related subroutines to solve a system of ODEs that describe the phase s |

transfer, dlssoc_lgtlon, chemical re_actlons, Interstitial aerosol scavenging, 50 4 Sum mary and Ongoing work

and wet deposition for each species.

In this work we add the following reactions to investigate the impacts of | A T NUR CMAQ’'s AQCHEM-KMT(I) cloud chemistry module was further updated with an

additional S, N, O-H chemistry as well as more mechanistic SOA chemistry [ WA N e A expanded mechanism with additional reactions for sulfur, nitrogen, organic, and

on select gas and aerosol concentrations for a winter/summer period: o g op a0 2 O other species and replacing the simple yield parameterization of in-cloud SOA
S, N, O-H chemistry’ {..1 7 ¢ | from (methyl)glyoxal to a mechanistic representation of SOA production from
NOs = NO, + HO + OH- * NOs + S04 > NO5™ + SOq P ‘

P o | | glyoxal, methylglyoxal, glycolaldehyde, and CH;COOH. A set of base-case and
jit [ updated CMAQ simulations were run over the E. US for June 2013 and CONUS
for Jan 2011. Base/updated model comparisons showed:
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 Elevated cloud SOA at both the surface and aloft; spatial distributions can
differ in part due to additional precursors in the new mechanism

« Average impacts on sulfate, HCHO, and O are on the order of a few percent
or less. Significantly larger impacts can be seen hourly, but those are

sporadic and limited in area
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* Average sulfate increased up to 25%, with the largest impacts in the Ohio
River Valley through the Northeast

NO; + HO; > HNO, HOCH,SO03 + HO = HSO3 + HO, + HC600H T el T T T T T nmen DT T T e e e « Average nitrate decreased up to 30% with a similar pattern as sulfate in the
NO, + O, & NO4 2 105 5> S =22 22 NOR o Sl <233 Figure 1. June average surface (a) AORGC, .. and (b) AORGC,.,. AORGC is in-cloud eastern half of the domain; nitrate increased up to 30% in parts of SoCal
HNO4 = HO, + NO; i SOA formed from GLY, MGLY, (GCOL, CCOOH). (c) % change in AORGC (New-Base); |+ Average HOx saw decreases up to 36% in some areas, but average O,
’"'C"’;’d SOA chemistry (d) Maximum hourly AAORGC (e) (from top left, clockwise) Weekly average (Jun 1-7) = HCHO, and NOx saw only small impacts over CONUS (~2% or less)
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H,0, — 2 HO OXLAC_; HO = HaC05 + €O, _ surface layer AORGC s, surface layer AAORGC (New-Base), Layer 20 AAORGC =+ HNO, saw decreases up to ~60% in some areas, with a spatial distribution
GCOL + HO - GCOLAC + HO; |C\)/|)§5LLAYC+ Ijl-(l)_liﬁ ;); ;Jlfg%%% LA 4 HO (New-Base), and Layer 20 AORGCy,,. (f) ime series of base and new AORGC for a cell similar to a combination of the sulfate and HOx changes. HNO, has been
SIERIL il = (€151 <7 il . PYRAC+HO - CCOOH + HO» + HyCO ; in western PA (circle in fig 1b) and the cell with max AAORGC (star in fig 1b). observed to contribute a significant amount to in-cloud S(IV) conversion in
SIEOLAL 52 (1) = GLTAG 5 [0 = : : ” ; % some areas (Ervens, 2015). HNO,, NO,,, and OH contribute to new oxidation
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i | «= | explicit tracking in CMAQ for the organic acids produced in-cloud, and
1Fahey et al., 2017; 2Damian et al., 2002; 3mostly from ReLACS-AQ (Leriche et al., 2013) unless o | k“w e 10 development of a hybrid AQCHEM-KMT™ module that allows for equilibrium or
otherwise noted; “max photolysis rates adjusted according to the solar zenith angle, soon to be updated o e TN - 15 dynamic mass transfer depending on the species/conditions to boost model
with photolysis rates calculated inline; “Warneck, 1999; >Lee and Schwartz, 1983; ®based on Lim et al. { . S N 5 o o
(2005) and Tan et al. (2009) and updated by Sareen et al., 2013. Gas phase OH is held constant during _ 0 o b eﬁlClency.
the model sync step to minimize errors from solving gas and aqueous phase chemistry separately. Upon Figure 2. June average % differences between the updated and base cases for (a)
droplet evaporation, new organic acids are added to the existing cloud SOA species “AORGC". sulfate, (b) HCHO, and (c) O;. Monthly average differences are small for these species
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Resuspension, vl - Lim et al., 2005, Environ. Sci. Technol., 39, 4441-4446. - Sareen et al., 2013, CMAS 2013. -
Tan et al., 2009, Env. Sci. Technol. 43, 8105-8112. - Warneck, 1999, Phys. Chem. Chem. Phys., 1, 5471-5483.
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