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1. INTRODUCTION 
 
This presentation reports on implementation of 

the parallel sparse matrix solver, FSparse, in the 
Chemistry Transport Model (CTM) in CMAQ [1]. 
This release is v6.2 and is a major redesign. It is 
applicable in the CMAQ version that uses either 
the Rosenbrock (ROS3) or SMV Gear (GEAR) [2] 
algorithms in the CTM. In FSparse different blocks 
of cells are distributed to separate threads in the 
parallel thread team. Performance results of the 
original and FSparse versions are presented. 
Species concentration values were compared for 
original and FSparse methods with some 
comments on numerical analysis, and error 
tolerances. 
 

2. TEST BED ENVIRONMENT 
 

2.1 Hardware 
 

The hardware systems chosen were the 
platforms at HiPERiSM Consulting, LLC, shown in 
Table 2.1. Each of the two nodes host two Intel 
E5v3 CPUs with 16 cores each. For the standard 
U.S. EPA version the MPI executions are across 
both nodes. Each node has, in addition, four Intel 
Phi co-processor many integrated core (MIC) 
cards with 60 and 59 cores for the respective 
models. This combination allows for testing of the 
FSparse hybrid parallel versions of CMAQ on 
either host or first generation Intel Phi processor 
[3]. In this case the thread parallel region of the 
CTM is offloaded to the Phi processors. 
 

2.2 Compiler 
 

Most results reported here implemented the 
Intel Parallel Studio® suite (release 17.0) using 
options for either host CPU or Phi coprocessor. 
The latter required code modification to identify 
MIC attributes within a single source code. The 
extensive reporting options were used to 
investigate optimization effectiveness. A limited 
number of executions are also reported for the 
Portland compiler (release 15.7).  

                                                      
* Corresponding author: George Delic, 

george@hiperism.com. 

 

2.3 Episode studied 
 

This report used the benchmark test data 
available in the CMAQ 5.1 download. This model 
episode was for July 1st, 2011, using the 
cb05e51_ae6 mechanism with 147 active species 
and 343 reactions. For day/night chemistry this 
results in 1224/1158 non-zero entries in the 
Jacobian matrix. The episode was run for a full 24 
hour scenario on a 100 X 72 California domain at 
12 Km grid spacing and 35 vertical layers for a 
total of 252,000 grid cells. This domain is some 
ten times smaller than that reported previously in 
[4]. In this report a variable number of MPI 
processes (NP) were used in the EPA version of 
CMAQ and only NP=1 in the OpenMP version. 
 
Table 2.1. CPU platforms at HiPERiSM Consulting, LLC 

Platform Node20 Node21 

Operating system SuSE Linux 13.2 SuSE Linux 13.2 

Processor Intel™ IA32 
(E5-2698v3) 

Intel™ IA32 
(E5-2698v3) 

Coprocessor 4 x Intel Phi 
7120 

4 x Intel Phi 
5110 

Peak Gflops 
(SP/DP) 

589 (SP) 589 (SP) 

Power 
consumption 

135 Watts 135 Watts 

Cores per 
processor 

16 16 

Power per core 8.44 Watts 8.44 Watts 

Processor count 2 2 

Total core count 32 32 

Clock 2.3 GHz 2.3 GHz 

Bandwidth 68 GB/sec 68 GB/sec 

Bus speed 2133 MHz 2133 MHz 

L1 cache 16x32 KB 16x32 KB 

L2 cache 16x256 MB 16x256 KB 

L3 cache 40 MB 40 MB 

 
In the following two performance metrics are 

introduced to assess thread parallel performance 
in the OpenMP modified code: 

(a) Speedup is the gain in runtime over the 
standard U.S. EPA version, 
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(b) Scaling is the gain in runtime with thread 
counts larger than 1, relative to the result 
for a single thread on the host CPU, or 
lowest thread count on the Intel Phi. 

 

3. RESULTS FOR THE STANDARD MODEL 
 

3.1 Profile of CMAQ on host 
 

This section repeats the previous year’s [1] 
profile results of the standard CMAQ 5.1 
distribution in the testbed environment identified in 
Section 2. The optimization level with the Intel 
compiler was “-O2” because higher optimizations 
caused segmentation faults (segfaults) at runtime. 
This could have been caused by (as yet) 
unresolved code bugs in CMAQ, or the Intel 
compiler itself. Since the previous report, several 
compiler bugs were corrected, but not all have 
been resolved to-date, (as with some issues within 
CMAQ itself). In addition, several issues in the 
thread parallel version of CMAQ were corrected. 

For a profile of where time is consumed Fig. 
3.1 compares all three CTM solvers with 1 MPI 
process. This report will focus on the Rosenbrock 
(ROS3) and Gear (GEAR) versions because they 
share common procedures and offer the best 
opportunity for efficient parallel thread tasking. 
 

 
Fig 3.1: Fraction of wall clock time (percent) by science 
process for EBI, ROS3, and GEAR versions of CMAQ 
for NP=1. Note that CHEM is not the dominant process 
for the EBI case. 

 

3.2 MPI performance on host with the Intel 
compiler 
 

The totals of wall clock time for ROS3 and 
GEAR CTM solvers, with various values of NP, is 
shown in Table 3.1 and Fig. 3.2. The combination 
of MPI processes, NP = NPROW x NPCOL, is in 

the range 1 to 64, with doubling of row and column 
processes.  
 
Table 3.1. Wall clock times (in seconds) and ratio for the 
U.S. EPA version of CMAQ on Intel host CPUs with 
ROS3 and GEAR solvers using the Intel compiler. 

NPROW 
X 

NPCOL 

CTM solver algorithm 

ROS3 GEAR GEAR/ROS3 

1 14403 18638 1.29 

4 3965 5595 1.41 

16 1341 1733 1.29 

64 623 761 1.22 

 

 

 Fig. 3.2 Wall clock time (seconds) for ROS3, and 
GEAR solvers in the standard U.S. EPA version of 
CMAQ for NP=1 to 64 using the Intel compiler. 
 

However, as shown in Tables 3.2 and 3.3, the 
parallel efficiency declines to ~67% when NP=16, 
and ~36% when NP=64. This loss in parallel 
efficiency is due to the diminished work load per 
MPI process with a domain of 252,000 cells.  
Partitioning amongst the available number of MPI 
processes, after division into blocks of 50 cells 
gives 252,000/50 = 5040 blocks for NP = 1, and 
5040 / NP thereafter, when NP > 1. As noted 
previously [1], the time consumed in MPI 
procedures increases substantially with larger NP. 
 
Table 3.2. MPI scaling and parallel efficiency for the 
U.S. EPA version of CMAQ on Intel host CPUs with the 
ROS3 solver using the Intel compiler.  

NPROW 
X 

NPCOL 

ROS3 solver algorithm 

MPI scaling MPI efficiency 

1 1.00 1.00 

4 3.63 0.91 

16 10.74 0.67 

64 23.12 0.36 
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Table 3.3. MPI scaling and parallel efficiency for the 
U.S. EPA version of CMAQ on Intel host CPUs with the 
GEAR solver using the Intel compiler. 

NPROW 
X 

NPCOL 

GEAR solver algorithm 

MPI scaling MPI efficiency 

1 1.00 1.00 

4 3.33 0.83 

16 10.75 0.67 

64 24.47 0.38 

 
 

3.3 MPI performance on host with the 
Portland compiler 
 

The Portland compiler was used to compile 
CMAQ and all associated dependencies with 
complier switches “-O4 –fastsse”. The results of 
the standard U.S. EPA CMAQ version are 
summarized in Tables 3.4 to 3.6. In view of the 
superior timing results with the Intel compiler, no 
further effort was expended in using the Portland 
compiler at this time. 
 
Table 3.4. Wall clock times (in seconds) and ratio for the 
U.S. EPA version of CMAQ on Intel host CPUs with 
ROS3 and GEAR solvers using the Portland compiler. 

NPROW 
X 

NPCOL 

CTM solver algorithm 

ROS3 GEAR GEAR/ROS3 

1 23900 27739 1.16 

4 6449 8326 1.29 

16 2375 2680 1.13 

 
 
Table 3.5. MPI scaling and parallel efficiency for the 
U.S. EPA version of CMAQ on Intel host CPUs with the 
ROS3 solver using the Portland compiler. 

NPROW 
X 

NPCOL 

ROS3 solver algorithm 

MPI scaling MPI efficiency 

1 1.00 1.00 

4 3.71 0.93 

16 10.06 0.63 

 
Table 3.6. MPI scaling and parallel efficiency for the 
U.S. EPA version of CMAQ on Intel host CPUs with the 
GEAR solver using the Portland compiler. 

NPROW 
X 

NPCOL 

GEAR solver algorithm 

MPI scaling MPI efficiency 

1 1.00 1.00 

4 3.33 0.83 

16 10.35 0.65 

 
 

 

4. OpenMP MODEL ON THE HOST 
 

4.1 ROS3 and GEAR speedup versus EPA 
 

An OpenMP modification (as described in 
Section 6) was implemented in the standard 
CMAQ version of the CTM procedure since the 
dominant amount of time is expended there for 
ROS3 and GEAR solvers (see Fig. 3.1). 
Performance results using the Intel compiler are 
presented in this section (and the next). 
 
Table 4.1. Wall clock times (in seconds) and ratio for the 
FSparse thread parallel version of CMAQ on the host 
CPU with ROS3 and GEAR solvers with 1 MPI process. 

Thread 
count 

CTM solver algorithm 

ROS3 GEAR GEAR/ROS3 

1 18413 27489 1.49 

4 13199 14168 1.07 

8 11446 11614 1.01 

12 10896 11561 1.06 

16 10453 10680 1.01 

 

 
Table 4.1 lists wall clock time and Fig. 4.1 

shows speedup versus thread count on the host 
CPU of the OpenMP parallel FSparse version over 
the standard U.S. EPA release of CMAQ. With 4 
to 16 threads the speedup over the standard EPA 
version ranges from 1.1 to 1.38 for ROS3 and 1.3 
to 1.75 for GEAR. The enhancement for the GEAR 
algorithm is due to more work per thread when 
compared to ROS3. The diminution of 
performance gain with higher thread counts is due 
to the smaller partitions of work per thread 
calculated from 5040 blocks of cells divided 
amongst the number of available threads. Grid 
cells are partitioned into blocks of size 50 and 
these blocks are distributed to threads in a thread 
team in the OpenMP version. 

Also noteworthy from Table 4.1 is the 
observation that the wall clock time with 8 threads 
is nearly identical for either CTM solver algorithm. 
This suggests that the superior GEAR algorithm is 
therefore to be preferred in production use. 
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Fig 4.1: With one MPI process on the host CPU this 
shows the speedup of the thread parallel FSparse 
CMAQ version over the U.S. EPA standard release for 1 
to 16 threads, with ROS3, and GEAR solvers. 

 
 

5. OpenMP MODEL ON THE Phi 
 

5.1 ROS3 and GEAR speedup versus EPA 
 

The same OpenMP modification (as described 
in Section 6) was implemented in the standard 
CMAQ version of the CTM procedure with offload 
of the thread parallel region to the Intel Phi 7120 
co-processor in ROS3 and GEAR solvers. 
 
Table 5.1. Wall clock times (in seconds) and ratio for the 
FSparse thread parallel version of CMAQ on the Intel 
Phi 7120 with ROS3 and GEAR solvers with 1 MPI 
process using the Intel compiler 

Thread 
count 

CTM solver algorithm 

ROS3 GEAR GEAR/ROS3 

60 12260 16610 1.35 

120 11285 15432 1.37 

180 11060 15723 1.42 

240 11099 16035 1.44 

 
Table 5.1 lists wall clock time and Fig. 5.1 

shows speedup versus thread count on the Intel 
Phi processor of the OpenMP parallel FSparse 
version over the standard U.S. EPA release of 
CMAQ. With two vector processing units (VPU) 
per core on the Intel Phi 7120, there is a saturation 
visible with more than 120 threads. An additional 
consideration is that 5040 blocks are partitioned 
over a larger thread team: e.g. 5040/120, 
5040/180, and 5040/240, thereby reducing the 
workload per thread. 

 
 

5.2 Comparison of host CPU and Phi 
 

For host CPU and Phi cases the speedup of 
the thread parallel version FSparse over the 
standard release of CMAQ increases 
monotonically with thread count. However, there 
are differences between ROS3 and GEAR results. 
Possible reasons include different data movement 
patterns, especially for the offload to the Phi. 
Another contributing factor is the difference in 
iteration patterns and their number. 
 

 
Fig 5.1: With one MPI process on the Intel Phi 7120 this 
shows the speedup of the thread parallel FSparse 
CMAQ version over the U.S. EPA standard release for 
60 to 240 threads, with ROS3, and GEAR solvers. 

 
 
 

6. NUMERICAL AND CODE ISSUES 
 

6.1 Parallel thread code 
 

To briefly describe the modifications to the 
U.S. EPA version of CMAQ, Tables 6.1 and 6.2 list 
the affected procedures and their replacement in 
the thread parallel versions. In version v6.2 of 
FSparse the thread parallel region in the CTM has 
a sequence of calls to the procedures listed below 
the driver. Comparing ROS3 and GEAR versions, 
while the standard version of CMAQ uses different 
procedure names, they share the same like-
named procedure listed in the FSparse columns of 
the Tables (with only minor differences – if any).  
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Table 6.1. Procedures in the U.S. EPA and FSparse 
versions of the ROS3 solver.  

EPA FSparse v6 
rbdriver.F rbdriver-v62.F 

rbsolver.F (included above) 

rbdata_mod.F fsdata_mod-mic.F 

rbdecomp.F fsdecomp-v62.F 

rbfeval.F fsfeval-v62.F 

rbinit.F fsinit.F 

rbjacob.F fsjacob-v62.F 

rbsolve.F fssolve-v62.F 

rbsparse.F fsparse.F 

 fsrconst-v62.F 

 
Table 6.2. Procedures in the U.S. EPA and FSparse 
versions of the GEAR solver.  

EPA FSparse v6 
grdriver.F grdriver-v62.F 

grsmvgear.F (included above) 

 fsdata_mod-mic.F 

grdecomp.F fsdecomp-v62.F 

grsubfun.F fsfeval-v62.F 

grinit.F fsinit.F 

grpderiv.F fsjacob-v62.F 

grbacksub.F fssolve-v62.F 

grsprse.F fsparse.F 

 fsrconst-v62.F 

 
All variables referenced in the thread parallel 

region are partition into shared or private 
categories. Furthermore, they also need to be 

flagged in an OPTIONS directive with the 

offload_attribute_target=mic attribute. Likewise, 
all functions referenced in the thread parallel 

region also need the OFFLOAD:mic attribute in a 
directive. Thus, where they occur, such changes 
have been applied to: 

 
RXNS_FUNC_MODULE.F90 

RXNS_DATA_MODULE.F90 

GRID_CONF.F 

GRVARS.F 

 
The resulting FSparse method code is the 

same for either host or Phi targets and each target 
is selected by a compiler switch. 
 

6.2 Comparing concentration values 
 

Any discrepancy between predictions of the 
JSparse [2] and FSparse [1] algorithms in the two 
methods is explained by the way precision is 
treated in each. The Chemistry solver uses double 
precision arithmetic but accepts some input data 
from single precision variables (temperature, 
pressure, photolysis rates, reaction rates, etc.). 
Therefore all expressions in FSparse are 
performed in double precision. The acid test is to 
compare the computed concentration values for 
selected species as predicted by the EPA (using 

JSparse) and the thread parallel version (using 
FSparse). Examples of such a comparison are 
shown in Figs. 6.1 and 6.2, where that absolute 
error shown is the difference in predicted 
concentrations. 

During debugging it was essential to carefully 
inspect concentration values for 10 selected 
species (O3, NOx, etc) for the entire domain and 
all 24 time steps. To within the tolerances required 
in ROS3 (ATOL=1.0e-07) and GEAR (ATOL=1.0e-
09), agreement was observed. In fact there was 
negligible difference in species values in the 
GEAR algorithm when ATOL=1.0e-08 is used (see 
Fig. 6.2). 

Fig 6.1: For the FSparse ROS3 solver of CMAQ on the 
host CPU (with 8 OpenMP threads and ATOL=10.0e-
07) this shows the O3 species concentration absolute 
error (scattered points) and concentration value (solid 
line) for 7200 values in layer 1 of the domain. The 
ranking is in increasing concentration value from left to 
right. 

Fig 6.2: For the FSparse GEAR solver of CMAQ on the 
Intel Phi (with 120 OpenMP threads and ATOL=10.0e-
08) this shows the O3 species concentration absolute 
error (scattered points) and concentration value (solid 
line) for 7200 values in layer 1 of the domain. The 
ranking is in increasing concentration value from left to 
right. 
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6.3 Code issues uncovered in this study 
 

Several code issues were uncovered during 
this implementation using the CMAQ 5.1 download 
of the original EPA version from the CMAS site. 
These included the following: 

 

 In bldit.cctm script the preprocessor uses a 

reserved name in “set PAR=( -Dparallel 

)” that corrupts OpenMP directives.  

 More than 60,000 compiler warnings such as 
“This name has not been given an 

explicit type” 

 Warning messages of the type “Global name 

too long” 

 Warning messages of the type “Source line 

truncated” 

 Warning messages of the type “A dummy 
argument with an explicit 

INTENT(OUT) declaration is not 

given an explicit value” 
 

To avoid termination of the compilation the 
warnings were disabled with the compiler option 

choice “-warn all,nodeclarations,nounused” 

while others required source code and script 
modifications. For example, all references to 

parallel were changed to parallel_mpi. 
 

7. LESSONS LEARNED 
 

7.1 Benefits of the FSparse method 
 

Comparing runtime performance for CMAQ 
5.1 in the new OpenMP parallel version with the 
U.S. EPA release showed benefits such as: 

 A speedup ~1.2 to 1.75 depending on the 
solver algorithm and thread count. 

 A single source code version of the CTM 
suitable for either host CPU or offload to 
the Phi co-processor. 

 Hybrid MPI+OpenMP algorithms that offer 
more on-node compute intensity as the 
number of available threads rises to 100’s 
and beyond. 

 Numerical values of predicted species 
concentration that are within the error 
tolerance inherent in the algorithms. 

 

7.2 Next steps 
 

A continuation of this work would include: 
 

 Examination of recent progress in sparse 
matrix techniques and research [5]. 

 Implementing further compiler and 
platform tuning opportunities. 

 A port to the 2nd generation Intel Phi 
processor 

 

8. CONCLUSIONS 
 

This report has described an analysis of 
CMAQ 5.1 behavior in the standard U.S. EPA 
release and a new thread parallel version of 
CMAQ for the Rosenbrock and Gear solvers. In 
this version (v6.2) subroutines common to both 
algorithms have been successfully developed for 
applications on host CPUs or Intel Phi processors. 

The new FSparse version of CMAQ offers 
layers of parallelism not available in the standard 
U.S. EPA release and is portable across multi- 
and many-core hardware and compilers that 
support thread parallelism. 
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