
Presented at the 16th Annual CMAS Conference, Chapel Hill, NC, October 23-25, 2017

1

CMAQ 5.1 PERFORMANCE WITH PORTLAND AND INTEL COMPILERS

George Delic*
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

This presentation reports on implementation of

the parallel sparse matrix solver, FSparse, in the
Chemistry Transport Model (CTM) in CMAQ [1].
This release is v6.2 and is a major redesign. It is
applicable in the CMAQ version that uses either
the Rosenbrock (ROS3) or SMV Gear (GEAR) [2]
algorithms in the CTM. In FSparse different blocks
of cells are distributed to separate threads in the
parallel thread team. Performance results of the
original and FSparse versions are presented.
Species concentration values were compared for
original and FSparse methods with some
comments on numerical analysis, and error
tolerances.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in
Table 2.1. Each of the two nodes host two Intel
E5v3 CPUs with 16 cores each. For the standard
U.S. EPA version the MPI executions are across
both nodes. Each node has, in addition, four Intel
Phi co-processor many integrated core (MIC)
cards with 60 and 59 cores for the respective
models. This combination allows for testing of the
FSparse hybrid parallel versions of CMAQ on
either host or first generation Intel Phi processor
[3]. In this case the thread parallel region of the
CTM is offloaded to the Phi processors.

2.2 Compiler

Most results reported here implemented the
Intel Parallel Studio® suite (release 17.0) using
options for either host CPU or Phi coprocessor.
The latter required code modification to identify
MIC attributes within a single source code. The
extensive reporting options were used to
investigate optimization effectiveness. A limited
number of executions are also reported for the
Portland compiler (release 15.7).

* Corresponding author: George Delic,

george@hiperism.com.

2.3 Episode studied

This report used the benchmark test data
available in the CMAQ 5.1 download. This model
episode was for July 1st, 2011, using the
cb05e51_ae6 mechanism with 147 active species
and 343 reactions. For day/night chemistry this
results in 1224/1158 non-zero entries in the
Jacobian matrix. The episode was run for a full 24
hour scenario on a 100 X 72 California domain at
12 Km grid spacing and 35 vertical layers for a
total of 252,000 grid cells. This domain is some
ten times smaller than that reported previously in
[4]. In this report a variable number of MPI
processes (NP) were used in the EPA version of
CMAQ and only NP=1 in the OpenMP version.

Table 2.1. CPU platforms at HiPERiSM Consulting, LLC

Platform Node20 Node21

Operating system SuSE Linux 13.2 SuSE Linux 13.2

Processor Intel™ IA32
(E5-2698v3)

Intel™ IA32
(E5-2698v3)

Coprocessor 4 x Intel Phi
7120

4 x Intel Phi
5110

Peak Gflops
(SP/DP)

589 (SP) 589 (SP)

Power
consumption

135 Watts 135 Watts

Cores per
processor

16 16

Power per core 8.44 Watts 8.44 Watts

Processor count 2 2

Total core count 32 32

Clock 2.3 GHz 2.3 GHz

Bandwidth 68 GB/sec 68 GB/sec

Bus speed 2133 MHz 2133 MHz

L1 cache 16x32 KB 16x32 KB

L2 cache 16x256 MB 16x256 KB

L3 cache 40 MB 40 MB

In the following two performance metrics are

introduced to assess thread parallel performance
in the OpenMP modified code:

(a) Speedup is the gain in runtime over the
standard U.S. EPA version,

Presented at the 16th Annual CMAS Conference, Chapel Hill, NC, October 23-25, 2017

2

(b) Scaling is the gain in runtime with thread
counts larger than 1, relative to the result
for a single thread on the host CPU, or
lowest thread count on the Intel Phi.

3. RESULTS FOR THE STANDARD MODEL

3.1 Profile of CMAQ on host

This section repeats the previous year’s [1]
profile results of the standard CMAQ 5.1
distribution in the testbed environment identified in
Section 2. The optimization level with the Intel
compiler was “-O2” because higher optimizations
caused segmentation faults (segfaults) at runtime.
This could have been caused by (as yet)
unresolved code bugs in CMAQ, or the Intel
compiler itself. Since the previous report, several
compiler bugs were corrected, but not all have
been resolved to-date, (as with some issues within
CMAQ itself). In addition, several issues in the
thread parallel version of CMAQ were corrected.

For a profile of where time is consumed Fig.
3.1 compares all three CTM solvers with 1 MPI
process. This report will focus on the Rosenbrock
(ROS3) and Gear (GEAR) versions because they
share common procedures and offer the best
opportunity for efficient parallel thread tasking.

Fig 3.1: Fraction of wall clock time (percent) by science
process for EBI, ROS3, and GEAR versions of CMAQ
for NP=1. Note that CHEM is not the dominant process
for the EBI case.

3.2 MPI performance on host with the Intel
compiler

The totals of wall clock time for ROS3 and
GEAR CTM solvers, with various values of NP, is
shown in Table 3.1 and Fig. 3.2. The combination
of MPI processes, NP = NPROW x NPCOL, is in

the range 1 to 64, with doubling of row and column
processes.

Table 3.1. Wall clock times (in seconds) and ratio for the
U.S. EPA version of CMAQ on Intel host CPUs with
ROS3 and GEAR solvers using the Intel compiler.

NPROW
X

NPCOL

CTM solver algorithm

ROS3 GEAR GEAR/ROS3

1 14403 18638 1.29

4 3965 5595 1.41

16 1341 1733 1.29

64 623 761 1.22

 Fig. 3.2 Wall clock time (seconds) for ROS3, and
GEAR solvers in the standard U.S. EPA version of
CMAQ for NP=1 to 64 using the Intel compiler.

However, as shown in Tables 3.2 and 3.3, the
parallel efficiency declines to ~67% when NP=16,
and ~36% when NP=64. This loss in parallel
efficiency is due to the diminished work load per
MPI process with a domain of 252,000 cells.
Partitioning amongst the available number of MPI
processes, after division into blocks of 50 cells
gives 252,000/50 = 5040 blocks for NP = 1, and
5040 / NP thereafter, when NP > 1. As noted
previously [1], the time consumed in MPI
procedures increases substantially with larger NP.

Table 3.2. MPI scaling and parallel efficiency for the
U.S. EPA version of CMAQ on Intel host CPUs with the
ROS3 solver using the Intel compiler.

NPROW
X

NPCOL

ROS3 solver algorithm

MPI scaling MPI efficiency

1 1.00 1.00

4 3.63 0.91

16 10.74 0.67

64 23.12 0.36

Presented at the 16th Annual CMAS Conference, Chapel Hill, NC, October 23-25, 2017

3

Table 3.3. MPI scaling and parallel efficiency for the
U.S. EPA version of CMAQ on Intel host CPUs with the
GEAR solver using the Intel compiler.

NPROW
X

NPCOL

GEAR solver algorithm

MPI scaling MPI efficiency

1 1.00 1.00

4 3.33 0.83

16 10.75 0.67

64 24.47 0.38

3.3 MPI performance on host with the
Portland compiler

The Portland compiler was used to compile
CMAQ and all associated dependencies with
complier switches “-O4 –fastsse”. The results of
the standard U.S. EPA CMAQ version are
summarized in Tables 3.4 to 3.6. In view of the
superior timing results with the Intel compiler, no
further effort was expended in using the Portland
compiler at this time.

Table 3.4. Wall clock times (in seconds) and ratio for the
U.S. EPA version of CMAQ on Intel host CPUs with
ROS3 and GEAR solvers using the Portland compiler.

NPROW
X

NPCOL

CTM solver algorithm

ROS3 GEAR GEAR/ROS3

1 23900 27739 1.16

4 6449 8326 1.29

16 2375 2680 1.13

Table 3.5. MPI scaling and parallel efficiency for the
U.S. EPA version of CMAQ on Intel host CPUs with the
ROS3 solver using the Portland compiler.

NPROW
X

NPCOL

ROS3 solver algorithm

MPI scaling MPI efficiency

1 1.00 1.00

4 3.71 0.93

16 10.06 0.63

Table 3.6. MPI scaling and parallel efficiency for the
U.S. EPA version of CMAQ on Intel host CPUs with the
GEAR solver using the Portland compiler.

NPROW
X

NPCOL

GEAR solver algorithm

MPI scaling MPI efficiency

1 1.00 1.00

4 3.33 0.83

16 10.35 0.65

4. OpenMP MODEL ON THE HOST

4.1 ROS3 and GEAR speedup versus EPA

An OpenMP modification (as described in
Section 6) was implemented in the standard
CMAQ version of the CTM procedure since the
dominant amount of time is expended there for
ROS3 and GEAR solvers (see Fig. 3.1).
Performance results using the Intel compiler are
presented in this section (and the next).

Table 4.1. Wall clock times (in seconds) and ratio for the
FSparse thread parallel version of CMAQ on the host
CPU with ROS3 and GEAR solvers with 1 MPI process.

Thread
count

CTM solver algorithm

ROS3 GEAR GEAR/ROS3

1 18413 27489 1.49

4 13199 14168 1.07

8 11446 11614 1.01

12 10896 11561 1.06

16 10453 10680 1.01

Table 4.1 lists wall clock time and Fig. 4.1

shows speedup versus thread count on the host
CPU of the OpenMP parallel FSparse version over
the standard U.S. EPA release of CMAQ. With 4
to 16 threads the speedup over the standard EPA
version ranges from 1.1 to 1.38 for ROS3 and 1.3
to 1.75 for GEAR. The enhancement for the GEAR
algorithm is due to more work per thread when
compared to ROS3. The diminution of
performance gain with higher thread counts is due
to the smaller partitions of work per thread
calculated from 5040 blocks of cells divided
amongst the number of available threads. Grid
cells are partitioned into blocks of size 50 and
these blocks are distributed to threads in a thread
team in the OpenMP version.

Also noteworthy from Table 4.1 is the
observation that the wall clock time with 8 threads
is nearly identical for either CTM solver algorithm.
This suggests that the superior GEAR algorithm is
therefore to be preferred in production use.

Presented at the 16th Annual CMAS Conference, Chapel Hill, NC, October 23-25, 2017

4

Fig 4.1: With one MPI process on the host CPU this
shows the speedup of the thread parallel FSparse
CMAQ version over the U.S. EPA standard release for 1
to 16 threads, with ROS3, and GEAR solvers.

5. OpenMP MODEL ON THE Phi

5.1 ROS3 and GEAR speedup versus EPA

The same OpenMP modification (as described
in Section 6) was implemented in the standard
CMAQ version of the CTM procedure with offload
of the thread parallel region to the Intel Phi 7120
co-processor in ROS3 and GEAR solvers.

Table 5.1. Wall clock times (in seconds) and ratio for the
FSparse thread parallel version of CMAQ on the Intel
Phi 7120 with ROS3 and GEAR solvers with 1 MPI
process using the Intel compiler

Thread
count

CTM solver algorithm

ROS3 GEAR GEAR/ROS3

60 12260 16610 1.35

120 11285 15432 1.37

180 11060 15723 1.42

240 11099 16035 1.44

Table 5.1 lists wall clock time and Fig. 5.1

shows speedup versus thread count on the Intel
Phi processor of the OpenMP parallel FSparse
version over the standard U.S. EPA release of
CMAQ. With two vector processing units (VPU)
per core on the Intel Phi 7120, there is a saturation
visible with more than 120 threads. An additional
consideration is that 5040 blocks are partitioned
over a larger thread team: e.g. 5040/120,
5040/180, and 5040/240, thereby reducing the
workload per thread.

5.2 Comparison of host CPU and Phi

For host CPU and Phi cases the speedup of
the thread parallel version FSparse over the
standard release of CMAQ increases
monotonically with thread count. However, there
are differences between ROS3 and GEAR results.
Possible reasons include different data movement
patterns, especially for the offload to the Phi.
Another contributing factor is the difference in
iteration patterns and their number.

Fig 5.1: With one MPI process on the Intel Phi 7120 this
shows the speedup of the thread parallel FSparse
CMAQ version over the U.S. EPA standard release for
60 to 240 threads, with ROS3, and GEAR solvers.

6. NUMERICAL AND CODE ISSUES

6.1 Parallel thread code

To briefly describe the modifications to the
U.S. EPA version of CMAQ, Tables 6.1 and 6.2 list
the affected procedures and their replacement in
the thread parallel versions. In version v6.2 of
FSparse the thread parallel region in the CTM has
a sequence of calls to the procedures listed below
the driver. Comparing ROS3 and GEAR versions,
while the standard version of CMAQ uses different
procedure names, they share the same like-
named procedure listed in the FSparse columns of
the Tables (with only minor differences – if any).

Presented at the 16th Annual CMAS Conference, Chapel Hill, NC, October 23-25, 2017

5

Table 6.1. Procedures in the U.S. EPA and FSparse
versions of the ROS3 solver.

EPA FSparse v6
rbdriver.F rbdriver-v62.F

rbsolver.F (included above)

rbdata_mod.F fsdata_mod-mic.F

rbdecomp.F fsdecomp-v62.F

rbfeval.F fsfeval-v62.F

rbinit.F fsinit.F

rbjacob.F fsjacob-v62.F

rbsolve.F fssolve-v62.F

rbsparse.F fsparse.F

 fsrconst-v62.F

Table 6.2. Procedures in the U.S. EPA and FSparse
versions of the GEAR solver.

EPA FSparse v6
grdriver.F grdriver-v62.F

grsmvgear.F (included above)

 fsdata_mod-mic.F

grdecomp.F fsdecomp-v62.F

grsubfun.F fsfeval-v62.F

grinit.F fsinit.F

grpderiv.F fsjacob-v62.F

grbacksub.F fssolve-v62.F

grsprse.F fsparse.F

 fsrconst-v62.F

All variables referenced in the thread parallel

region are partition into shared or private
categories. Furthermore, they also need to be

flagged in an OPTIONS directive with the

offload_attribute_target=mic attribute. Likewise,
all functions referenced in the thread parallel

region also need the OFFLOAD:mic attribute in a
directive. Thus, where they occur, such changes
have been applied to:

RXNS_FUNC_MODULE.F90

RXNS_DATA_MODULE.F90

GRID_CONF.F

GRVARS.F

The resulting FSparse method code is the

same for either host or Phi targets and each target
is selected by a compiler switch.

6.2 Comparing concentration values

Any discrepancy between predictions of the
JSparse [2] and FSparse [1] algorithms in the two
methods is explained by the way precision is
treated in each. The Chemistry solver uses double
precision arithmetic but accepts some input data
from single precision variables (temperature,
pressure, photolysis rates, reaction rates, etc.).
Therefore all expressions in FSparse are
performed in double precision. The acid test is to
compare the computed concentration values for
selected species as predicted by the EPA (using

JSparse) and the thread parallel version (using
FSparse). Examples of such a comparison are
shown in Figs. 6.1 and 6.2, where that absolute
error shown is the difference in predicted
concentrations.

During debugging it was essential to carefully
inspect concentration values for 10 selected
species (O3, NOx, etc) for the entire domain and
all 24 time steps. To within the tolerances required
in ROS3 (ATOL=1.0e-07) and GEAR (ATOL=1.0e-
09), agreement was observed. In fact there was
negligible difference in species values in the
GEAR algorithm when ATOL=1.0e-08 is used (see
Fig. 6.2).

Fig 6.1: For the FSparse ROS3 solver of CMAQ on the
host CPU (with 8 OpenMP threads and ATOL=10.0e-
07) this shows the O3 species concentration absolute
error (scattered points) and concentration value (solid
line) for 7200 values in layer 1 of the domain. The
ranking is in increasing concentration value from left to
right.

Fig 6.2: For the FSparse GEAR solver of CMAQ on the
Intel Phi (with 120 OpenMP threads and ATOL=10.0e-
08) this shows the O3 species concentration absolute
error (scattered points) and concentration value (solid
line) for 7200 values in layer 1 of the domain. The
ranking is in increasing concentration value from left to
right.

Presented at the 16th Annual CMAS Conference, Chapel Hill, NC, October 23-25, 2017

6

6.3 Code issues uncovered in this study

Several code issues were uncovered during
this implementation using the CMAQ 5.1 download
of the original EPA version from the CMAS site.
These included the following:

 In bldit.cctm script the preprocessor uses a

reserved name in “set PAR=(-Dparallel

)” that corrupts OpenMP directives.

 More than 60,000 compiler warnings such as
“This name has not been given an

explicit type”

 Warning messages of the type “Global name

too long”

 Warning messages of the type “Source line

truncated”

 Warning messages of the type “A dummy
argument with an explicit

INTENT(OUT) declaration is not

given an explicit value”

To avoid termination of the compilation the
warnings were disabled with the compiler option

choice “-warn all,nodeclarations,nounused”

while others required source code and script
modifications. For example, all references to

parallel were changed to parallel_mpi.

7. LESSONS LEARNED

7.1 Benefits of the FSparse method

Comparing runtime performance for CMAQ
5.1 in the new OpenMP parallel version with the
U.S. EPA release showed benefits such as:

 A speedup ~1.2 to 1.75 depending on the
solver algorithm and thread count.

 A single source code version of the CTM
suitable for either host CPU or offload to
the Phi co-processor.

 Hybrid MPI+OpenMP algorithms that offer
more on-node compute intensity as the
number of available threads rises to 100’s
and beyond.

 Numerical values of predicted species
concentration that are within the error
tolerance inherent in the algorithms.

7.2 Next steps

A continuation of this work would include:

 Examination of recent progress in sparse
matrix techniques and research [5].

 Implementing further compiler and
platform tuning opportunities.

 A port to the 2nd generation Intel Phi
processor

8. CONCLUSIONS

This report has described an analysis of
CMAQ 5.1 behavior in the standard U.S. EPA
release and a new thread parallel version of
CMAQ for the Rosenbrock and Gear solvers. In
this version (v6.2) subroutines common to both
algorithms have been successfully developed for
applications on host CPUs or Intel Phi processors.

The new FSparse version of CMAQ offers
layers of parallelism not available in the standard
U.S. EPA release and is portable across multi-
and many-core hardware and compilers that
support thread parallelism.

REFERENCES

[1] Delic, G., 2016: see presentation at the Annual
CMAS meeting (http://www.cmasecenter.org).

[2] Jacobson, M. and Turco, R.P., (1994), Atmos.
Environ. 28, 273-284.

[3] INTEL: Intel Corporation, http://www.intel.com

[4] Delic, G., 2014: see presentation at the Annual
CMAS meeting (http://www.cmasecenter.org).

[5] Duff, I.S., Erisman, A.M., and Reid, J.K., Direct
Methods for Sparse Matrices, Oxford University Press,
2nd Ed., 2017.

http://www.cmasecenter.org/
http://www.intel.com/
http://www.cmasecenter.org/

