
Air Quality Impacts of Electrification in tandem with Intermittent Renewable Resources

ATER

Michael Mac Kinnon, Siavash Ebrahimi, Marc Carreras-Sospedra, Jack Brouwer, G.S. Samuelsen, Donald Dabdub

15th Annual CMAS Conference

October 24, 2016

Introduction and Motivation

California Policy Drivers

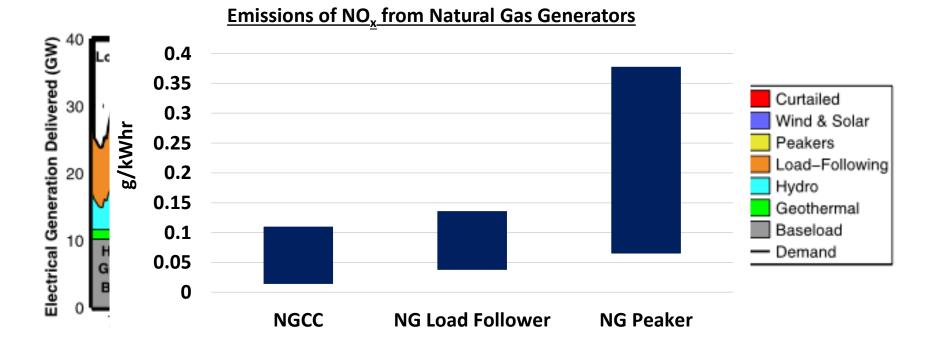
- Increase renewable electricity generation
 - 50% by 2030
- Dramatically reduce economy-wide GHG emissions
 - 80% below 1990 levels by 2050
- Improve regional AQ

Required Pathway for CA GHG Goals^{1,2,3,4}

Extensive electrification of end-use sectors

and

- Decarbonization of electricity supply
 - Increase in wind and solar power



1: Williams et al., 2012, 2: McCollum et al., 2012, 3: Morrison et al., 2015, 4: Yang et al., 2015

Introduction and Motivation

Integrating intermittent renewables can impact generator dispatch/dynamics – potentially increasing emissions locally

- Increased start/stops, part-load, ramping, cycling
- Could yield localized emission consequences impacting regional AQ

Source: Effort and the appearer al., 2005. LF & Peaker – Shaffer et al., 2015

Project Goal

Analyze emissions and AQ impacts of wide-spread electrification of end-use sectors in tandem with renewable resource integration

- Assess emissions accounting for (1) dynamics and physical constraints of future electrical grid and (2) reductions in electrified end-use sectors
- Quantify and spatially resolve impacts on ground-level ozone and PM_{2.5}

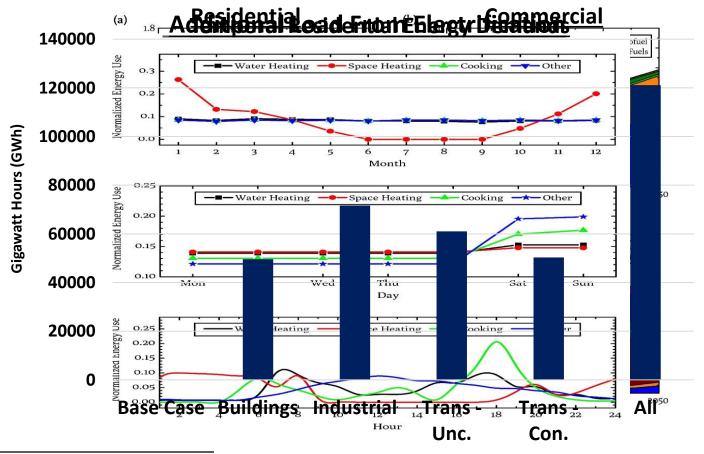
Provide insight on how electrification and renewables can achieve maximum GHG and AQ co-benefits

Avoid unforeseen AQ consequences

Approach – Scenario Development

Develop scenarios of electrification in principal energy end-use sectors in excess of business-as-usual in 2020, <u>2030</u>, and 2050

- With 50% penetration of renewable electricity


Case	End-use Sector	Technologies	2030 BAU [%]	2030 Elect. [%]
Buildings	Commercial & Residential	Cooking, space heating, water heating	56.9% 36.9%	79.6% 71.2%
Industrial	Industrial	Boilers/HVAC only	7.4%	24.%
Transportation – Uncontrolled	Light Duty Vehicles: <u>Uncontrolled</u> <u>charging</u>	Battery Electric Vehicles	1.1%	9.3%
Transportation – Controlled	Light Duty Vehicles: Controlled charging	Battery Electric Vehicles	1.1%	7.7%
All Sectors	All the above	All the above	Above	Above

Approach – Scenario Development

Quantify and temporally resolve additional load from electrification

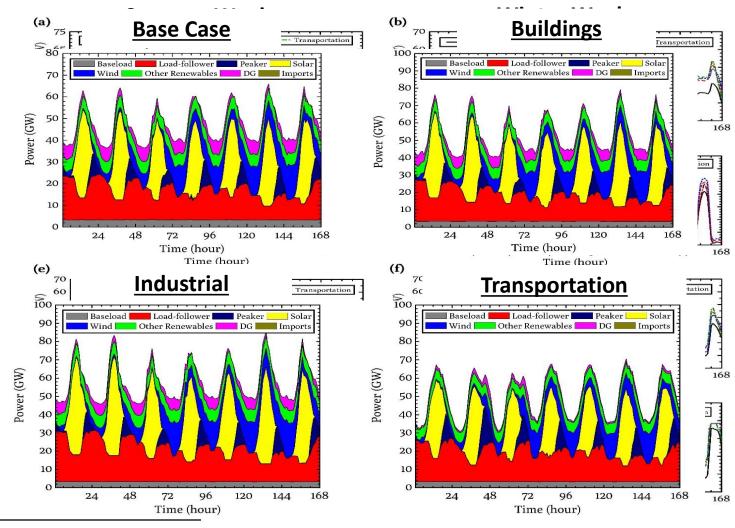
- Project energy demand and fuel distribution to 2030 for end-use sectors
- Establish feasible electrification potential and quantify additional load
- Determine temporal electrification load profile

Approach – Grid Modeling

Utilize a state-of-the art grid modeling software platform to simulate electrical grid in horizon years

Capture a physical representation of future grid infrastructure

Models for balancing dynamics and dispatch


- Holistic Grid Resource Integration and Deployment (HiGRID) Tool
 - <u>Provides temporal load for renewable and complementary technologies</u>
- PLEXOS Solutions Software
 - Provides utility generator dispatch (spatial and temporal)

Approach – Grid Modeling

Modeling to resolve a temporal load & temporal/spatial dispatch profile

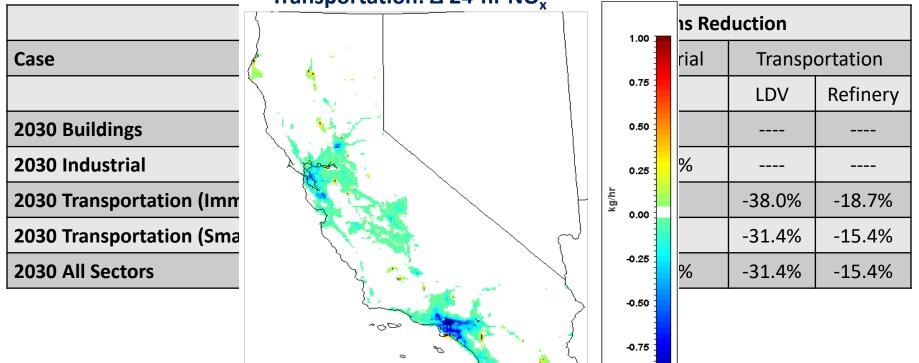
© Advanced Power and Energy Program 2016



Approach – Emission Impacts

Account for generator emissions and end-use emission changes

Dispatched Generators

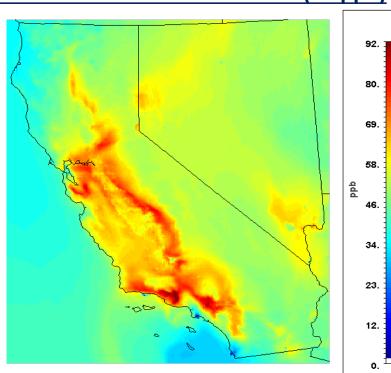

- Steady state and dynamic penalties
 - Part-load, start-up, ramping emission factors

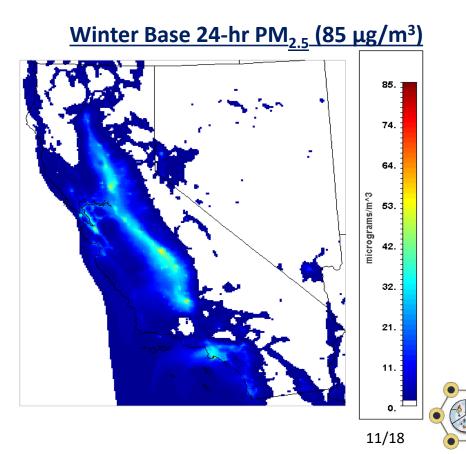
Approach – Emission Impacts

Quantify and resolve emissions in end-use sectors

- 2005 EPA NEI projected to 2020, 2030 (ARB) & 2050 (MARKAL)
- Impacted sources adjusted to account for electrification penetration
- Spatial and temporal allocation, speciation via the SMOKE model

Transportation: Δ 24-hr NO_v

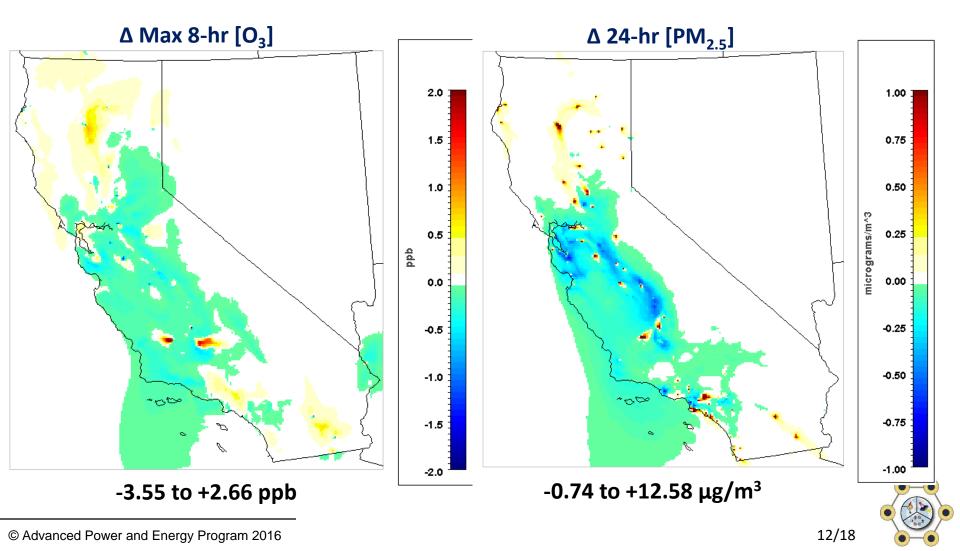

-1.00



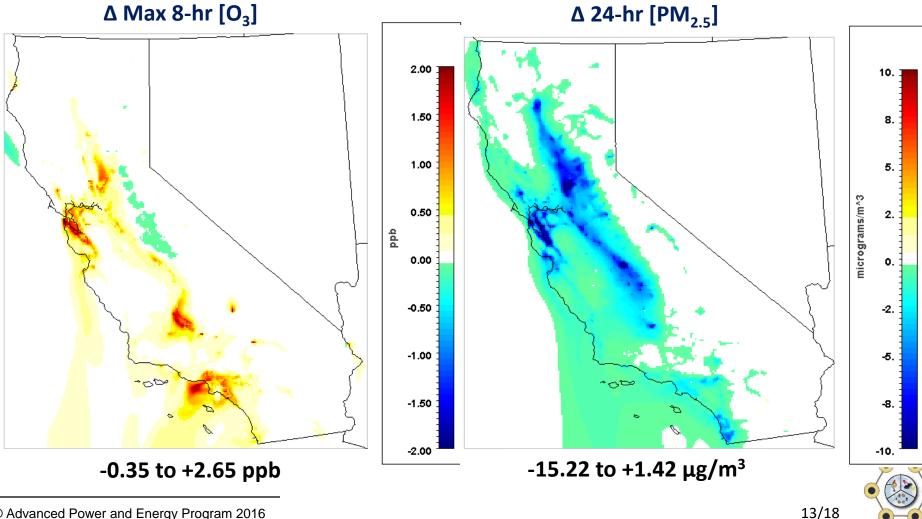
Approach – Air Quality Modeling

Simulations of atmospheric chemistry and transport via CMAQ

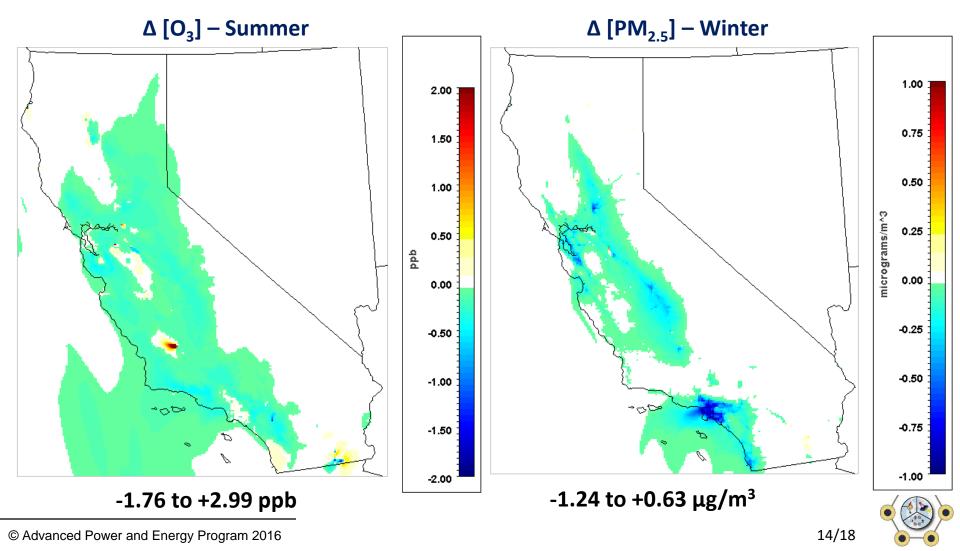
- CMAQ version 4.7.1 CBO5CL, 4 km x 4 km grid
- WRF-ARW, NCEP Final Operational Global Analysis 1 x 1 grid
 - Summer (July 7-13, 2005) with high observed ozone & PM concentrations
 - Winter (December 1-7, 2005) with high observed PM concentrations



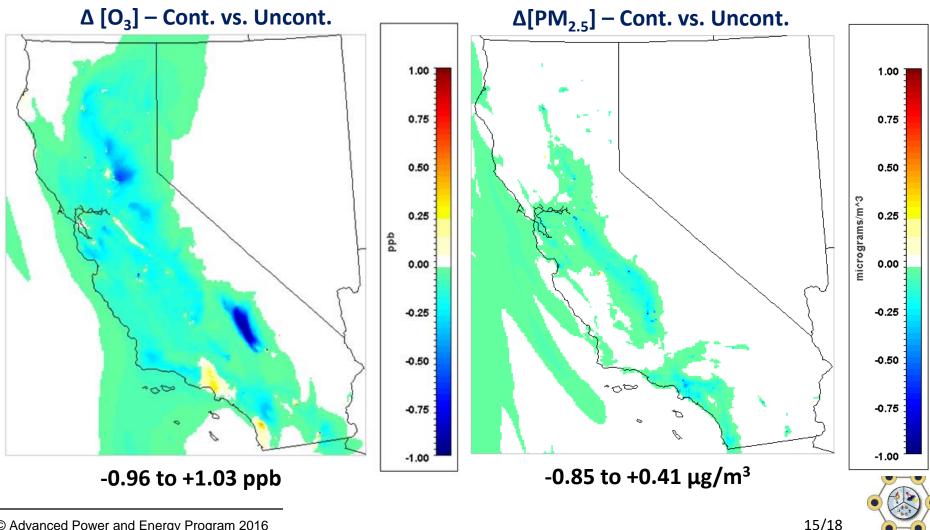
Summer Base Max 8-hr Ozone (93 ppb)


Results – Buildings Case (Summer)

- Large areas of moderate improvements with localized worsening
 - Magnitude of PM_{2.5} increase notable


Results – Buildings Case (Winter)

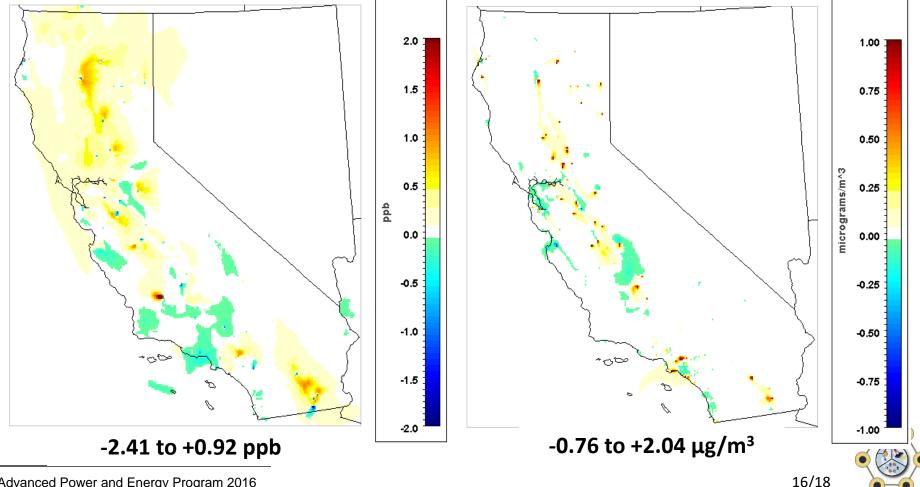
- PM_{2.5} levels notably improve for winter episode
 - Larger energy demand for heating, off-set of wood burning, PM chemistry


Results – Transportation Case (Uncontrolled)

- Important improvements in urban regions (large vehicle fleet, refineries)
 - <u>Refineries have a major impact</u>

Results – Transportation (Controlled vs. Uncontrolled)

- Complementary strategies can maximize energy, GHG and AQ benefits
 - Reduce grid dynamic consequences and enhance renewable utilization



Results – Industrial Sector

- Challenging to electrify, characterized by worsening relative to other sectors
 - Requires comprehensive planning and understanding of process electrification potential

 $\Delta[PM_{2.5}]$ – From Base (Winter)

© Advanced Power and Energy Program 2016

Conclusion and Future Work

Conclusions

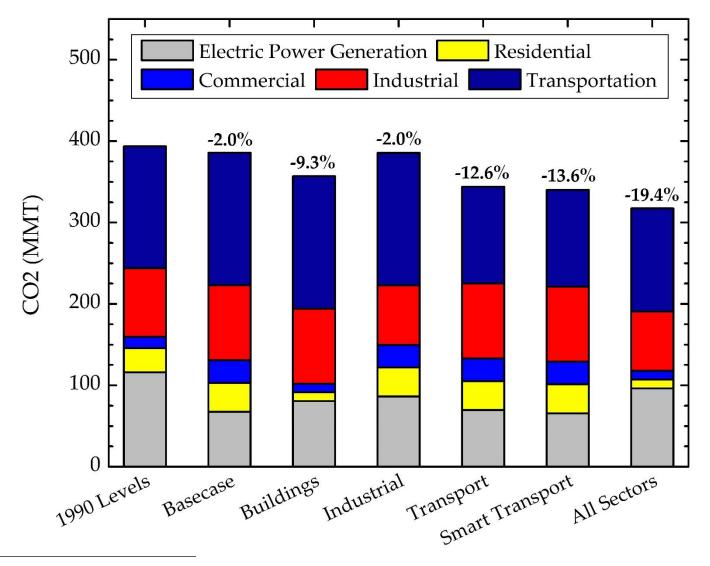
- Electrification generally translates to improvements in ozone and PM_{2.5}
 - Impacts vary markedly by pollutant, sector, horizon year, season, and location
- Increased electricity demand and altered grid dynamics can result in localized worsening at sites of emitting utility-scale power generators
 - Should be interpreted via population exposure
- Holistic strategies needed to achieve maximum AQ and GHG co-benefits

Future Work

- Expand and enhance modeling strategies
 - Consider additional models for grid representation
 - Increase the modeling episode in CMAQ
 - Health impact assessment to better resolve results
- Expand assessment to more thoroughly evaluate realistic advanced complementary technologies/strategies

[©] Advanced Power and Energy Program 2016

Thank You


Acknowledgements

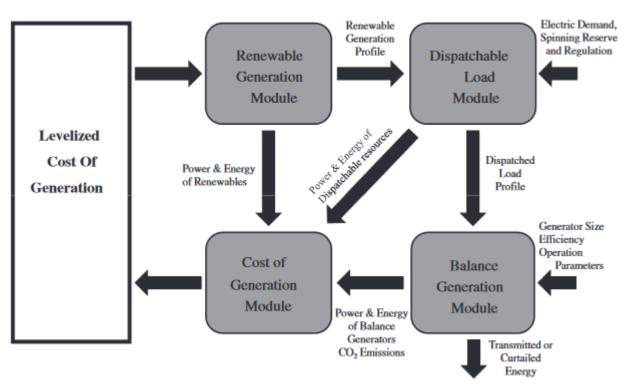
- California Energy Commission
- Marla Mueller California Energy Commission
- Dan Loughlin US EPA
- Katie Leong
- Jeremiah Blackburn

Results – GHG Emissions

Results – Peak Ozone and PM_{2.5}

Summary of peak impacts on 8-hour max ozone and 24-hour PM_{2.5} for 2030 Cases

Case		Δ 8-hour Ozone [ppb]	Δ 24-hour PM _{2.5} [µg/m ³]
2030 Buildings	Summer	-3.55 to +2.66	-0.74 to +12.58
2050 Bunungs	Winter	-0.35 to +2.65	-15.22 to +1.42
2030 Industrial	Summer	-4.13 to +2.87	-0.24 to +18.31
	Winter	-0.45 to +1.28	-1.14 to +4.55
2030 I. Transportation	Summer	-1.76 to +2.99	-3.83 to +4.95
	Winter	-0.07 to +0.47	-1.24 to +0.63
2030 S. Transportation	Summer	-1.89 to +0.63	-0.96 to +1.02
	Winter	-0.81 to +0.69	-1.65 to +0.39
2030 All Sectors	Summer	-6.5 to +3.05	-1.19 to +27.99
	Winter	-0.63 to +2.83	-15.95 to +4.10



HiGRID Model

Holistic Grid Resource Integration and Deployment (HiGRID)

- Resolve interaction between baseload, dispatchable, and intermittent renewable generation to study cost/benefit of installing renewable generation capacity
- Evaluate

HiGrid Model Flowchart

HiGRID Model

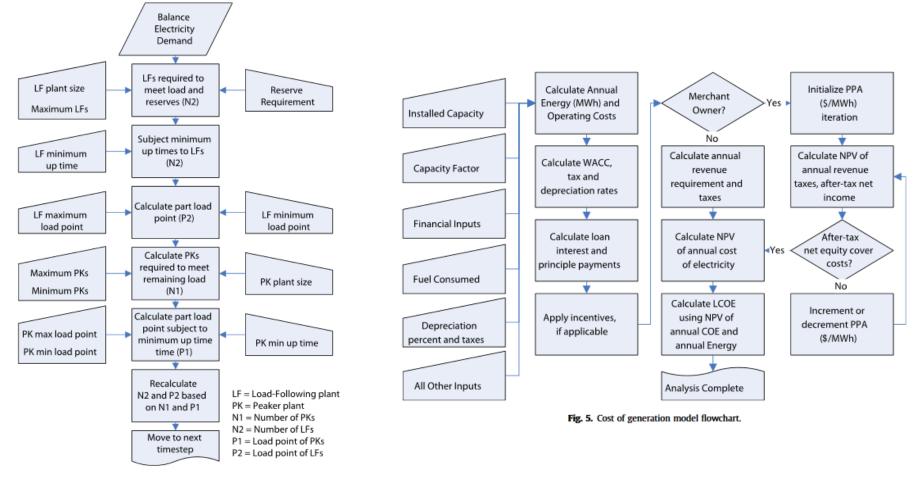
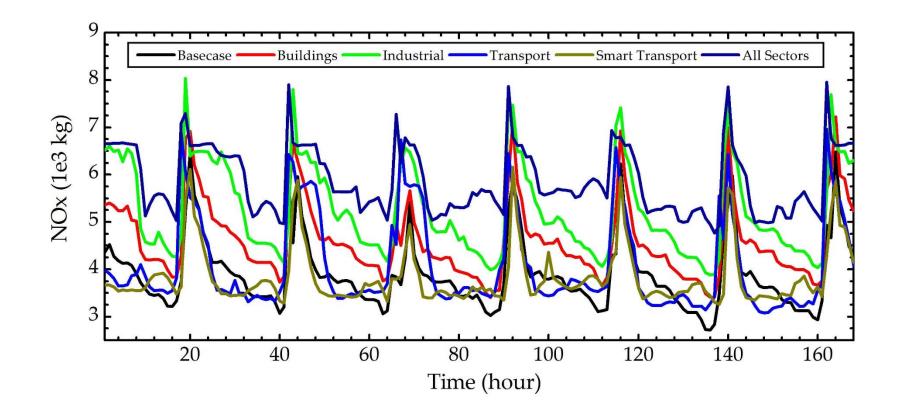
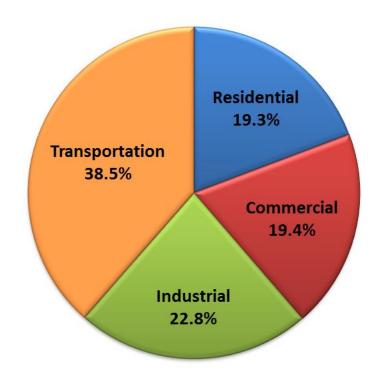
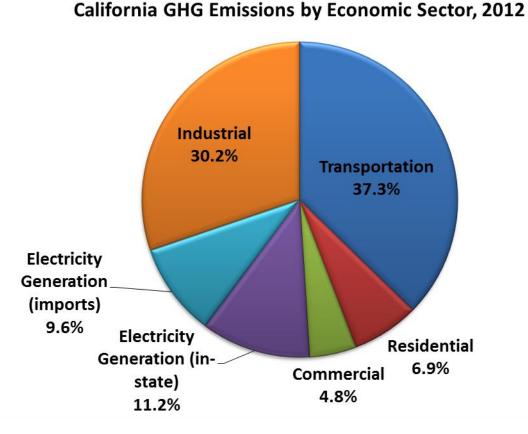



Fig. 4. Balance generation model flowchart.


Electric penetration of energy end-uses (%) in 2012 and 2030

			2030						
Energy Sector	End-Use	2012	Base Case	Buildings	Industrial	Uncontrolled Transportation	Smart Transportation	All	
Residential	Total	36.0	36.9	71.3	36.9	36.9	36.9	71.3	
	Space Heating	2.9	3.0	40.0	3.0	3.0	3.0	40.0	
	Water Heating	2.5	2.6	40.0	2.6	2.6	2.6	40.0	
	Cooking	20.2	20.7	50.0	20.7	20.7	20.7	50.0	
	Pool & Spa	4.3	4.4	40.0	4.4	4.4	4.4	40.0	
	Clothes Dryer	42.9	43.7	70.0	43.7	43.7	43.7	70.0	
Commercial	Total	58.0	57.0	79.7	57.0	57.0	57.0	79.7	
	Space Heating	5.3	5.2	40.0	5.4	5.4	5.4	40.0	
	Water Heating	4.0	3.9	40.0	4.1	4.1	4.1	40.0	
	Cooling	86.7	86.5	90.0	86.9	86.9	86.9	90.0	
	Cooking	22.5	22.1	50.0	22.1	22.1	22.1	50.0	
	Process	5.5	5.4	40.0	5.4	5.4	5.4	40.0	
	Other	84.0	83.7	90.0	90.0	90.0	90.0	83.7	
Industrial	Total	11.0	7.5	7.5	24.3	7.5	7.5	24.3	
	Boiler	0.0	0.0	0.0	40.0	0.0	0.0	40.0	
	HVAC	16.3	11.3	11.3	50.0	11.3	11.3	50.0	
	Process Heat	2.9	1.9	1.9	1.9	1.9	1.9	1.9	
	Other Process	65.8	55.6	55.6	55.6	55.6	55.6	55.6	
	Other	11.0	7.5	7.5	7.5	7.5	7.5	7.5	
Transportation	Total	0.1	1.1	1.1	1.1	9.3	7.8	7.8	

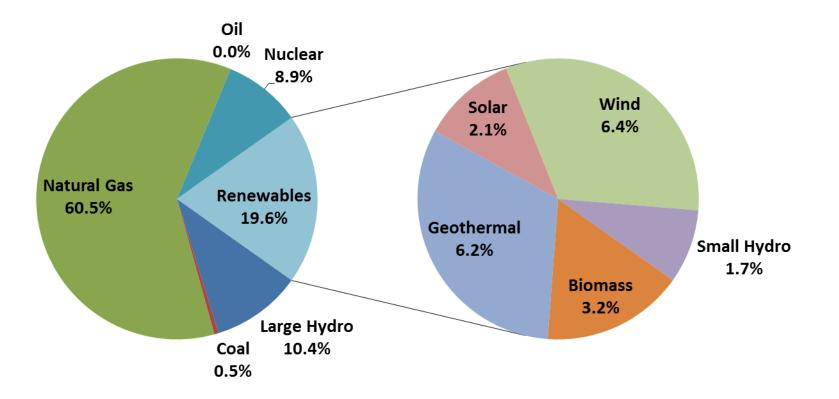
• California Energy Use



California Energy Consumption by End-Use Sector, 2012

Reference: U.S. Energy Information Administration. "State Profile and Energy Estimates of California"

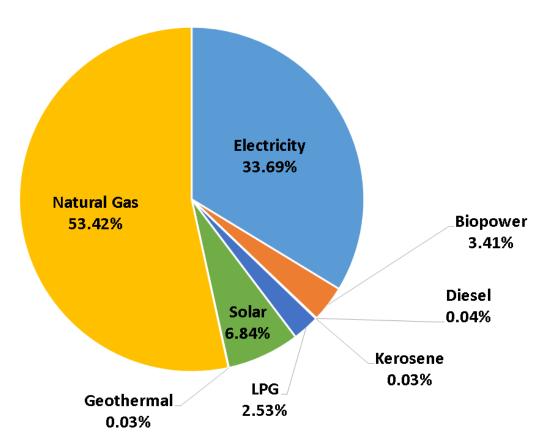
• California GHG Emissions



Reference: California Air Resources Board. 2014. "California Greenhouse Gas Emission Inventory: 2000-2012".

California Electricity Generation

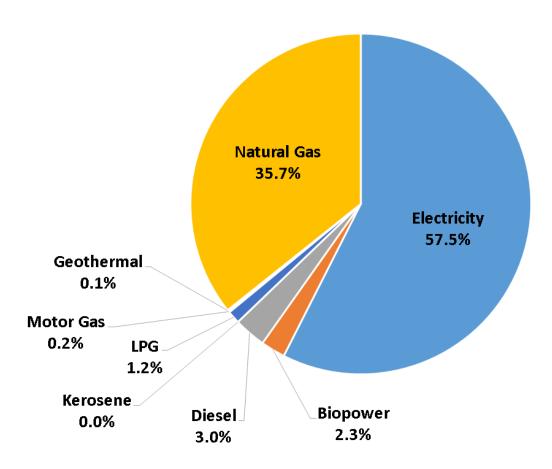
California in-state Electricity Generation Mix, 2013



27/18

Reference: U.S. Energy Information Administration. "State Profile and Energy Estimates of California"

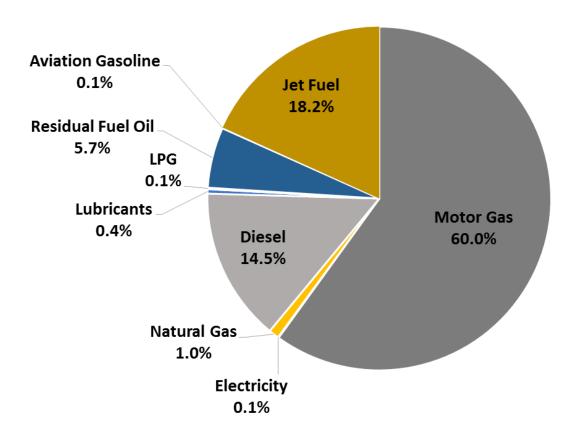
• Residential Electrification Potential


California Residential End-Use Energy Consumption, 2012

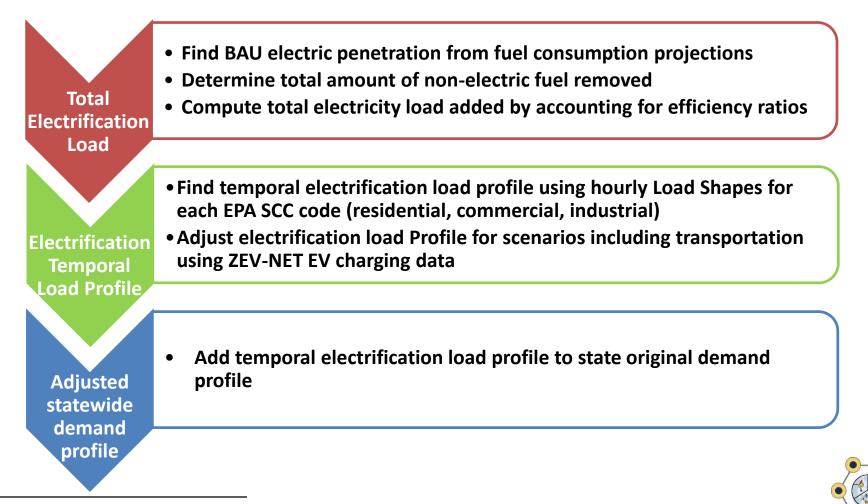
• Commercial Electrification Potential

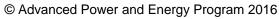
California Commercial End-Use Energy Consumption, 2012

• Industrial Electrification Potential

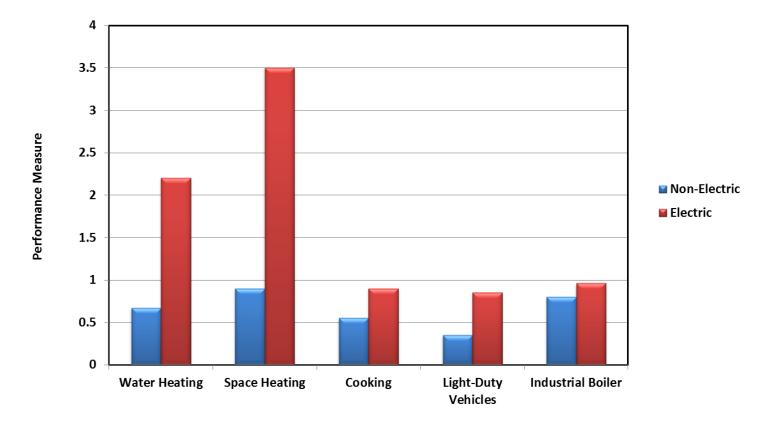

California Industrial End-Use Energy Consumption, 2012

• Transportation Electrification Potential


California Transportation End-Use Energy Consumption, 2012



Approach and Methodology


• Method used for adjusting projected statewide electricity demand profile after implementing electrification

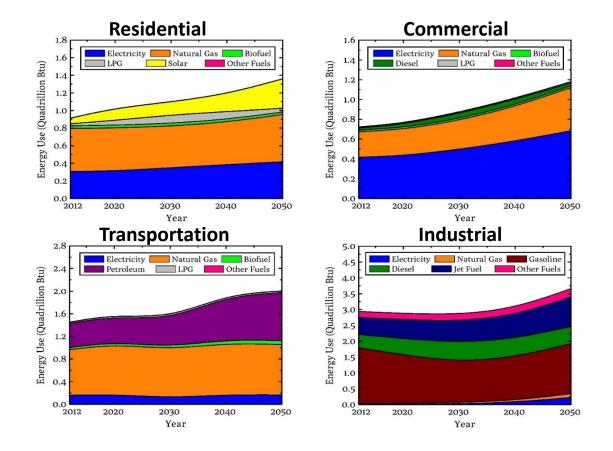
Approach and Methodology

• Non-Electric vs. Electric Efficiency Comparison

CA CO2 Emissions Reductions After Electrification (MMTCO2) 2030 Cases									
	BAU 2030	Res 2030	Com 2020	0 Ind 2030	Immediate	Smart Tra	ResCom	ResComTra	ResComTraInd
Cases	DAU 2050	Res 2050	COM 2050		Tra 2030	2030	2030	2030	2030
Residential	36	13	36	36	36	36	13	13	13
Commercial	28	28	10	28	28	28	10	10	10
Industrial	92	92	92	67	92	92	92	92	67
Transportation	163	163	163	163	141	129	163	141	141
Power	59	65	63	81	60	61	69	80	104
Total (MMTCO2)	378	360	363	374	357	346	346	336	334
% Change	0.0%	-4.6%	-3.8%	-1.0%	-5.5%	-8.3%	-8.3%	-11.0%	-11.5%

Introduction and Motivation

40,000 GWh/year	63,000 GWh/yea	B 11 3 1	Zero Net Energy Commercial Buildings Goal Double Energy Savings in Existing Buildings Goal		^{al} Energy Efficiency
Economic DR at 5% of peak Goal	Achieve Economic Po				Demand Response
2008 2010	2013 2015 20	016 2020	2025	2030	2050
11% RPS Goal 2	20% RPS Goal	33% RPS Goal 12 GW DG Goal 8 GW Utility-Scale Go	al	50% RPS Goal	Renewable Energy
	10% Light- Duty State Vehicles be ZEV	25% of Light- Duty State Vehicles be ZEV	Over 1.5 million ZEVs on California Roadways Goa		Transportation Energy
Greenhouse Gas Reductions		Reduce GHG Emissions to Level (AB 32) – Represents Reduction from Projected Emissions	s 30%	Reduce GHG Emissions 40% Below 1990 Levels (Exec. Order)	Reduce GHG Emissions 80% Below 1990 Levels (Exec. Order)



35/18

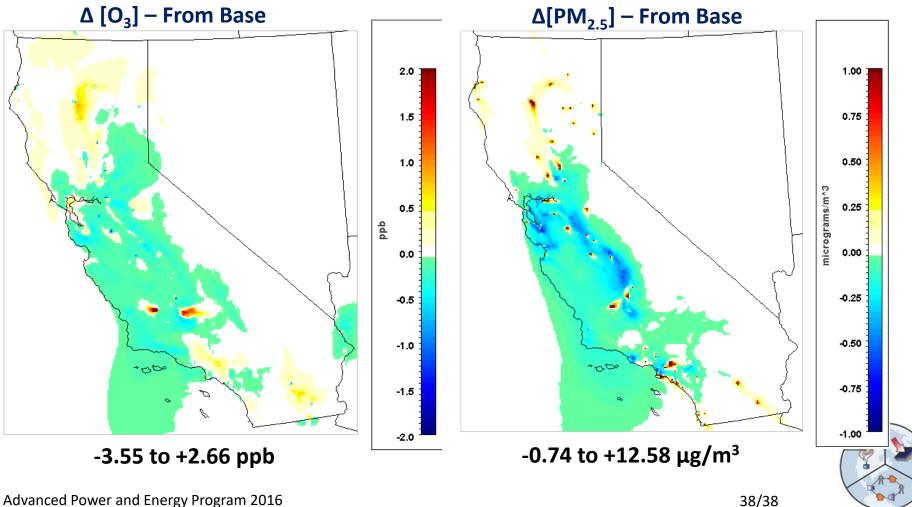
© Advanced Power and Energy Program 2016

Projected Business-as-usual fuel demand & distribution by sector

- California energy consumption data & Market Allocation (MARKAL) Model
- Trends based on the projected fuel price & demand and supply regulations

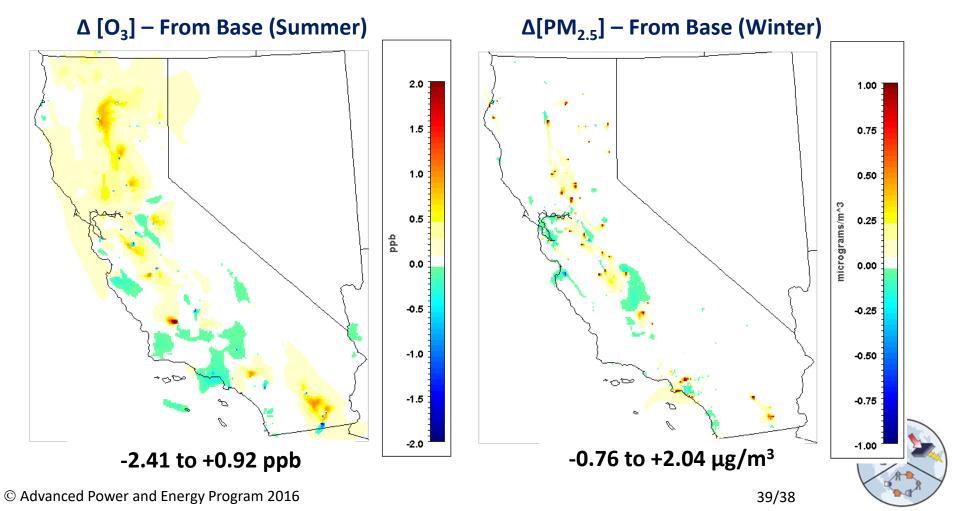
Approach – Scenario Development

Develop scenarios of electrification in principal energy end-use sectors in excess of business-as-usual in 2020, <u>2030</u>, and 2050


- Project energy demand and fuel distribution for end-use sectors to establish potential feasible additional electrification
- Quantify and characterize additional load from electrification
 - Projected electrification load for feasible technology deployment
 - Sector-specific end-use considerations
 - Energy efficiency ratios (non-electric vs. electric)
 - Determine temporal electrification load profile
 - Sector- and fuel-specific temporal profiles, e.g., Industrial is 24/7 with no seasonal variation, residential peaks on weekends

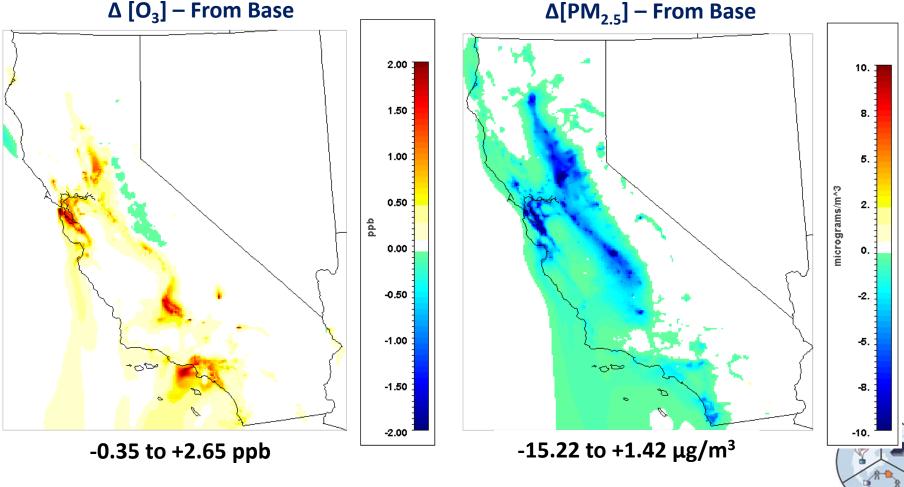
Results - Buildings Case (Summer)

AQ impacts for building electrification


- Improvements in ozone (summer) and PM (summer/winter) significant
- Localized ozone (summer) worsening adjacent to some generator sites

Results – Industrial Sector

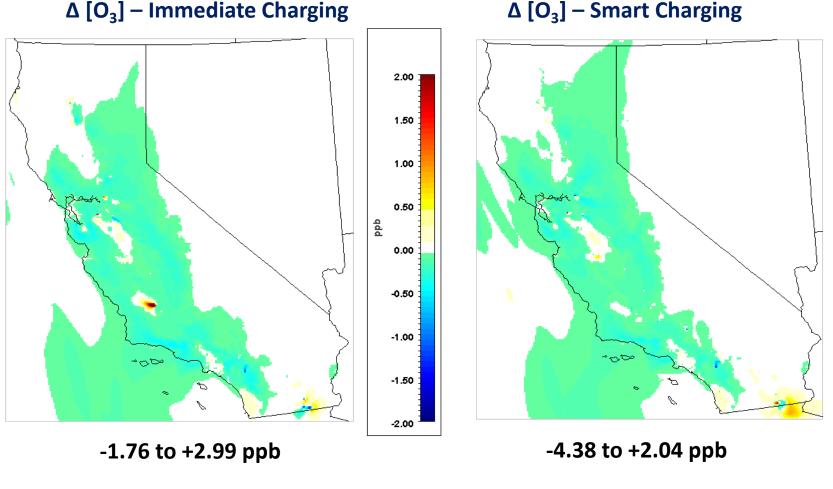
Industrial sector electrification requires further assessment


- Challenging to electrify assume only boiler and HVAC electrification
- Significant degree of worsening relative to other sectors
 - Requires comprehensive planning and understanding of process electrification potential

Results - Buildings Case (Winter)

AQ impacts for building electrification

- Improvements in ozone (summer) and PM (summer/winter) significant
- Localized ozone (summer) worsening adjacent to some generator sites


40/38

© Advanced Power and Energy Program 2016

Results – Transportation (LDV) Case

AQ impacts for LDV electrification multifaceted

- Important improvements in urban regions (high vehicle fleet, refinery presence)
- **Complementary strategies can maximize AQ benefits & avoid harmful outcomes**

Δ [O₃] – Smart Charging

© Advanced Power and Energy Program 2016

2.0 1

1.5

1.0

0.5

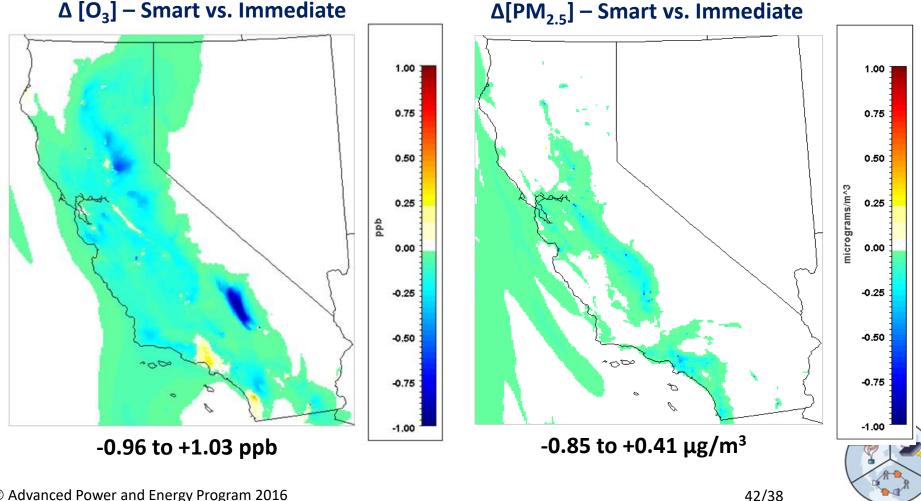
0.0

-0.5

-1.0

-1.5

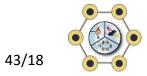
-2.0


qdd

Results – Transportation (Smart vs. Immediate)

AQ impacts for Light Duty Vehicle electrification multifaceted

Complementary strategies can maximize energy, GHG and AQ benefits

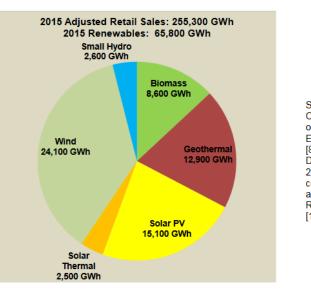

Reduce grid dynamic consequences and enhance renewable utilization

Δ [PM_{2 5}] – Smart vs. Immediate

© Advanced Power and Energy Program 2016

Case	Additional Load [MWh]	Renewable Capacity [MW]	BAU [%]	2030 [%]
Buildings	49,556,400	92674		
Industrial	71,601,800	99159		
Transportation – Immediate	61,000,000	81789		
Transportation – Smart	50,310,000	75857		
All Sectors	121,158,000	105079		

 $\textcircled{\sc online {C}}$ Advanced Power and Energy Program 2016


140000 120000 Gigawatt Hours (GWh) 100000 80000 60000 40000 20000 0 Base Case Buildings Industrial Trans - Unc. Trans - Con. All

Additional Load From Electrification

California Renewable Energy In 2015 26% of electricity retail sales from renewable generation

Figure 3: 2015 Generation From Renewable Facilities Serving California

Source: Energy Commission staff based on Quarterly Fuels and Energy Report (QFER) [8], 2015 Power Source Disclosure Filings [11], S-2 Filings [D2], CPUC compliance filings [12], and Energy Commission RPS Compliance Filings [13]. Updated July 2016.

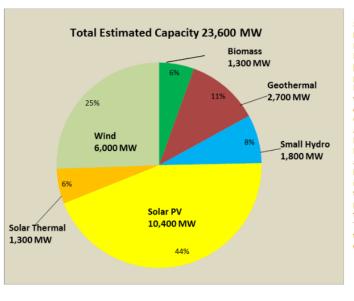
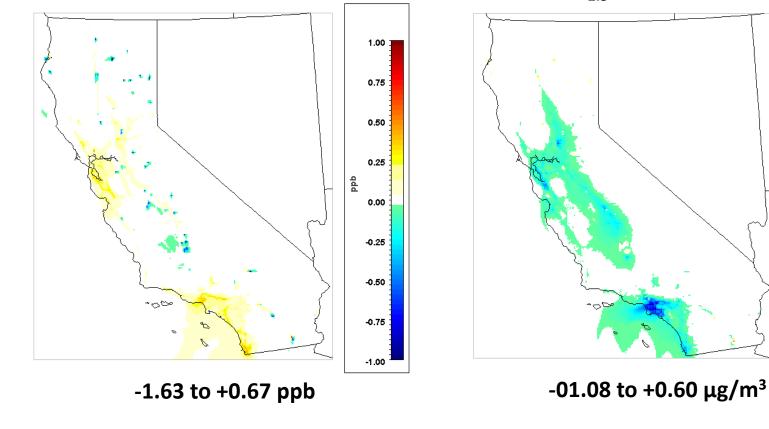


Figure 4: In-State Renewable Capacity by Resource Type, Includes Self-Generation (as of June 30, 2016)

Source: Energy Commission staff based on Quarterly Fuel and Energy Report, source [8], Renewable Distributed Generation sources [D1]-[D14], Data include only facilities physically located in California. However, there are some instances where in-state facilities have contracted to sell power outside California. See notes for Table 2 for additional information about the data Not included in Figure 4 are 1,650 MW of renewable energy facilities that are physically located out-of-state but have the first point on interconnection in California. Totals may not sum due to rounding. Also, not included in the pie chart is 144 MW of self-generation for which the fuel type is undefined. The 144 MW is included, however, in the 23,600 MW of total estimated capacity.

Case	Sector/Sub-sector	Technologies	BAU [%]	2030 [%]
Buildings	Commercial & Residential	Cooking, space heating, water heating	56.9% 36.9%	79.6% 71.2%
Industrial	Industrial	Boilers only - no process	7.4%	24.%
Transportation – Immediate	Light Duty Vehicles: <u>Uncontrolled charging</u>	Battery Electric Vehicles	1.1%	9.3%
Transportation – Smart	Light Duty Vehicles: Controlled charging	Battery Electric Vehicles	1.1%	7.7%
All Sectors	All the above	All the above	Above	Above



Results – Winter Cases

 Δ [O₃] Relative to Base

AQ impacts differ for same scenario in Winter

- Complexity of tropospheric ozone formation and lower baseline values
- PM impacts generally enhanced including improvements in ground-level conc.
 - Important for some regions of the State \rightarrow Central Valley

$\Delta[PM_{2.5}]$ Relative to Base

© Advanced Power and Energy Program 2016

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

micrograms/m^3

Approach – Scenario Development

Develop scenarios of wide-spread electrification in principal economic sectors in excess of business-as-usual

- Transportation
 - LDV only, 1 case uncontrolled charging and 1 case smart charging strategies
 - Temporal distribution National Household Travel Survey & VMT demand data
- Service/Commercial/Residential = Buildings
 - Only space heating, water heating, cooking
 - NG load shapes for Res from eQuest, for Com from historical profiles from survey data
 - Space heating varies throughout the year , weekends vs. midday
- Industrial
 - Only boiler (40%) and HVAC (50%) end-uses are electrified
 - 24/7, annual demand is steady

[©] Advanced Power and Energy Program 2016

Approach – Scenario Development

- Projected statewide load
 - From CPUC renewable integration study¹, adjusted with MARKAL projections
 - 50% renewables in 2030, renewable mix determined by CAISO/CPUC scenarios²
- Balancing dynamics
 - Temporal renewable load profile determined by HiGRID³
 - Intermittent balanced by DR, DG, ES, and EV dispatched in order of flexibility
 - Any remaining demand estimated by HiGRID is then balanced by dispatching power plants in PLEXOS
- Plexos
 - Grid simulation tool based economic optimization methods while consider balancing requirements and transmission constraints
 - Generator dispatch

Plexos

- Grid simulation tool based economic optimization methods while consider balancing requirements and transmission constraints
- Generator dispatch

• Determine additional load from electrification

 Projected statewide demand + electrification load while considering temporal distribution and energy efficiency ratios (non-electric vs. electric)

• Determine temporal electrification load profile

 Sector- and fuel-specific temporal profiles, e.g., industrial is 24/7 and consistent throughout the year

