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Air Pollution
Accountability

Regulation

*Other regulations
*Compliance

«Efficiency gains . _Seeks to quantify |
-Fuel price impacts of regulations on

Emissions outcomes of interest

* Transport

« Chemistry « Confounding variables
*Deposition obscure signal at each

Air Quality link

*Lifestyle changes « Goal: Assess CMAQ’s

*Uptake and retention . .
ability to capture air
quality changes over
period of changing

*Population susceptibility .

«Smoking emissions

*Healthcare access
*Demographic shifts

Health Outcome Henneman et al. (2016), JAWMA

Exposure/Dose




Substantial emissions reductions in multiple
species from mobile and EGU sources
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Henneman et al. (in review)

Utility Emissions:

90% decrease in NOy & SO, in
southeastern U.S.
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CMAQ/SMOKE/WRF modeling system

Chemical Transport Model: Domain:
Community Multiscale Air Quality Eastern US, 12km
Model with the Decoupled Direct 201x162 horizontal grid
Method (CMAQ-DDM, v5.0.2) and 13 Vertical Layers

CBO5tucl _ae6 mechanism

Emissions Model:
Sparse Matrix Operator Kernel
Emissions (SMOKE, v3.5.1)
Modeling System
2002 & 2011 NEls

Meteorology Model:

Weather Research and Forecasting
(WRF, v3.6.1) Model




CMAQ/SMOKE/WRF modeling system

Operational
Evaluation
O0l1E-01M 11Ee11M
Emissions 2001 2011
Meteorology 2001 2011

How well does CMAQ capture observed air quality changes?

What caused the air quality changes?

CMAQ-DDM/3D

1. Concentration 2. Sensitivity




CMAQ-modeled changes 2001 vs. 2011:
Summertime O; decreases, Wintertime O, increases

Model Evaluation

2001 2011
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NMB: Normalized Mean Bias  MB: Mean Bias Ranges (typical) from Simon et al. (2012)

NME: Normalized Mean Error ME: Mean Error Evaluation based on AQS (EPA)



CMAQ-modeled changes 2001 vs. 2011:
PM, . decreases in summer and winter

Model Evaluation
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How well does CMAQ, capture observed changes
between 2001 and 20117

2011 PM, ; Monthly Evaluation

100

Dynamic evaluation of PM, . for

Southeast: (AL, FL, GA, MS, NC, SC, TN) 0-
60
Observed CMAQ s M
2001 13.9 10.7 £
2011 10.4 7.9 z "
20 1
Difference 3.5 2.8 -
40 4
—60- . . . . . . . . . . . .
1 2 3 4 5 6 7 8 9 10 11 12
Month 2011
* CMAQ biased low in both years * Negative bias in the
* Slight under-prediction of change summertime, positive in the
across years winter

* Model performs similarly in
2001 and 2011



MB (ug/m’)

Which species contribute most to bias?

Mean Bias (MB) can help answer: MBzii(Cm—CO)
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* Main contributors for Jun-Aug (-): sulfate and OC
* Main contributors for Dec-Feb (+): EC and OC



Aerosol pH conventional wisdom: decreased
sulfate should lead to increased pH

S0O,/S0,* NH;/NH,*
(driver of aerosol pH) (neutralizer)
2000 @ f Tttt Tt
4 )
2011 f T Tt
\_ J

* Conventional wisdom: aerosols are neutralized, pH should go up
* |ISORROPIA used to calculate aerosol pH by using CMAQ modeled ion
concentrations as inputs



Aerosol acidity: pH remains low across

period of changing emissions
pH — July 2001 pH — July 2011
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« CMAQ results consistent

5
. with observed changes
in pH
o 3 « Nationwide, increases
2 estimated at 0-5% yr’
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0 Guan et al., in preparation
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Dynamic evaluation: separating impacts of

emissions and meteorology using CDFs
Ozone PM,

1

0.8 0.8 |

Meteorolog(ii6

Nﬁ

0.2 §H

. . 0.6 . .
Emissions Meteorology Emissions

Emissions: 11Ee01M - 01E*01M
Meteorological: 11Ee11M — 11Ee01M

* Change in median ozone (5ppb) * Impacts of emissions changes
attributable to emissions increase at higher percentiles
changes

* Meteorology effects on 95t
percentile larger than emissions:
implications on compliance



Sensitivity: 15t-order response of

concentration to emission
CMAQ-DDM/3D

1. Concentration 2. Sensitivity
slope of the tangent line at E,

A
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Ozone sensitivities to EGU and on-road
sources decrease

EGU sensitivities

July

Sensitivities in both seasons
trend to zero

Hot-spot remains in
southeast

2001 2011

* Sensitivities in both seasons
trend to zero

* Summertime sensitivities
around power plants
remain important
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PM, . sensitivities to EGU and on-road sources
decrease

EGU sensitivities

e Sensitivities in both seasons

decrease (larger change in
winter

e Ohio River Valley and point
sources remain important

January

On-road sensitivities

:;; 2 ugms
3.00

2.25I
1.50
* Sensitivities decrease 1.25
= 0.00

across seasons

* |In 2011, winter sensitivities
larger than summer
sensitivities

July
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Meteorology has little effect on sensitivities

Ozone — On-road sensitivities
11Ee11M 11E«01M * Little change attributable to

meteorology

January

PM, ; — EGU sensitivities
11Ee11M 11E«01M
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e Some differences in
southeastern U.S.

July




Conclusions

e Operational Evaluation

— CMAQ captures O3 and PM,  concentration changes, with
different species dominating bias in different seasons

— Sulfate and OC are the main contributors to bias in summer,
and EC and OC in winter

— Aerosols remain highly acidic, despite of significant reduction
of SO, emissions

— Sensitivity decreases from 2001 to 2011
 Dynamic Evaluation

— Emissions drives concentration changes, though meteorology
has larger effect on high O; days

— Meteorology has little effect on sensitivity
— Corroborates empirical evidence (Henneman et al., 2015)



