
Exploring parallel processing opportunities in AERMOD

George Delic, Ph.D., HiPERiSM Consulting, LLC

Introduction

The HiPERiSM experience in working with two major environmental

models suggests that opportunities for enhanced parallelism have not

been sufficiently explored or developed. One such model is AERMOD

[1] developed by the U.S. EPA’s Office of Air Quality Planning and

Standards (OAQPS). The purpose of this report is to examine code

structure and expose the potential for a thread parallel implementation.

Evidence of potential performance gains are demonstrated in a simple

task farming experiment using the (unmodified) source code. The

testbed environment included many- and multi-core processors such as

the Intel Xeon and Xeon Phi processors.

Test Bed Environment

The hardware systems chosen were the platforms at HiPERiSM

Consulting, LLC, where each of two nodes host two Intel E5v3 CPUs

with 16 cores each. In addition, each node has four 1st generation Intel

Phi co-processor many integrated cores (MIC) cards with 60 and 59

cores for the respective models. With four MIC cards per node, and 4

threads per MIC core, the total available thread count is 960 and 944,

for the respective nodes. This report implemented the Intel Parallel

Studio® suite (release 16.0) using options for either host CPU or Phi

coprocessor.

A Task Farming Experiment

The benchmark of Case 5 [2], with 916 receptors, was partitioned into

separate (independent) tasks by distributing the number of receptors

into separate AERMOD input data streams. This partitioning scheme is

shown in the table. The resulting number of tasks were then launched

concurrently as serial AERMOD runs on the respective processor and

coprocessor targets. Note that the node has two CPUs with 16 cores

each (together denoted as “host”), whereas the there are four attached

Phi cards (denoted as Phi, or MIC) with a total of 240 cores available.

The runtimes shown in Figs 1 are based on averages in the case of

multiple tasks. Inspection of Fig.1 shows that a 60 task partition of

Case 5 on one Phi co-processor out-performs a single core task on the

host. However, it also shows that the Phi times for any task collection

do not out-perform those of the host with 30 tasks. The longest

runtimes are for the 1-core result on either processor with a ratio of

~460 for Phi versus host. However, the 240 task result on the Phi is less

than 4 times longer than the 30-core result on the host as shown by the

ratio of Fig.2. This suggests that after complete parallelization, where

redundant work would be removed, a reversal could be expected.

There is variability in runtimes when receptors are partitioned into

separate tasks. The individual runtimes for the example of the 240 tasks

on the Phi processor corresponding to 60, 120, and 240 cores are shown

in Fig. 3. The separate curves correspond to 1, 2, and 4 Phi processors,

respectively. The horizontal axis counts the number of tasks. For more

than one Phi processor the task times are concatenated with the division

at the cusp(s). The rising trend on each Phi card is due, in part, to

earlier tasks receiving more resources on each coprocessor than later

ones. Also the differences in receptor data is a contributing factor with

some tasks completing before others.

Results

[1] AERMOD is available at the U.S. EPA Technology Transfer

Network, Support Center for Regulatory Air Models,

(https://www.epa.gov/scram/)

[2] Delic, G. and A. R. Srackangast, 2007: contribution to 6th Annual

CMAS Conference, Chapel Hill, NC, October 1-3, 2007,

(https://www.cmascenter.org/conference/2007/agenda.cfm)

Parallelization issues

Source and receptor loops

The AERMOD model does have implicit loops that could be

parallelized. There are 27 source loops and 38 receptor loops that are

typically nested inside the source loops. Any compute intensive

receptor loop is a target for thread parallelization and would involve a

less complex level of effort than attempting to parallelize on a source

loop that contains it

Call tree and the receptor loop

The call tree structure in AERMOD inside potential parallel regions,

such as the receptor loop in PCALC, is complex. Some procedures

contain deeper procedure call trees. In fact the call tree in the PCALC

receptor loop is of the order of four levels deep.

Variables in the receptor loop

Nearly all variables in the call tree contained by the receptor loop are

global while a few are local. If the receptor loop is to be modified for

thread parallel form, then all variables contained therein, for caller and

callee, need to be classified as either shared of private to avoid memory

corruption when multiple threads are active in a thread team

Variable categories for the Phi

In addition to the thread parallel requirements, variables contained in

the parallel region need to be listed by type for offload to the Phi. There

are three categories to list in separate declarations: “in”, “inout”, or

“nocopy”.

I/O operations in AERMOD

The AERMOD code contains numerous formatted I/O including some

120 read statements and 1760 write statements. Those that are inside

potential thread parallel regions are best hoisted outside it. This would

require some memory for storage of data intended for deferred output

outside the parallel region. However, this approach would enhance

performance by avoiding thread synchronization in the parallel region

Level of effort to parallelize

The code features itemized above imply some considerable level of

effort to create thread parallel regions and implies significant code

modification and debug effort.

References

Figure 1: Wall clock time (in seconds) versus task count on host and 1,

2, and 4 Intel MIC co-processors in a log-log plot. This is for Case 5

partitioned by receptors into 1, 30, 60, 120, and 240, separate

AERMOD runs as in Table 1.

Figure 2: This is the ratio of Phi times from Fig.1 divided by the best

host time corresponding to 30 host cores. The horizontal scale is the

task count on the Phi processor(s).

Figure 3: For the example of 240 separate tasks in the table, this shows

the time (in minutes) versus each of 240 separate AERMOD tasks. The

separate curves correspond to utilization of 60 cores (1 Phi card), 120

cores (2 Phi cards), and 240 cores (4 Phi cards).

Conclusions

Quantitative evidence of parallel scaling with AERMOD in a simple

task farming experiment was demonstrated. While no source code

modification was performed, the results with the serial version of

AERMOD suggest good potential for performance enhancement on

platforms with multiple cores. Theses results motivate an exploration

of how best to modify AERMOD for parallel performance.

Fig. 1

Fig. 2

Fig. 3

10

100

1000

10000

1 10 100 1000

Host Phi

0

2

4

6

8

10

12

14

16

18

20

30 60 90 120 150 180 210 240

0

20

40

60

80

100

120

140

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

1
5
1

1
5
7

1
6
3

1
6
9

1
7
5

1
8
1

1
8
7

1
9
3

1
9
9

2
0
5

2
1
1

2
1
7

2
2
3

2
2
9

2
3
5

60 cores 120 cores 240 cores

Number of tasks Number of receptors per

task

Target processor and

MIC count

1 916 Host and 1x Phi

30 ~ 31 Host and 1 x Phi

60 ~15 1 x Phi

120 ~8 2 xPhi

240 ~4 4 x Phi

https://www.cmascenter.org/conference/2007/agenda.cfm

