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1. INTRODUCTION 
 
Fine particulate matter with particle diameters 

less than 2.5 microns (PM2.5) has been linked to 
respiratory and pulmonary difficulties and for this 
reason, strong concentration guidelines have been 
developed by the U.S. Environmental Protection 
Agency (EPA) to limit exposure [Pope et al. 
(2002); US EPA (2004); Hoff and Christopher 
(2009)].  To assess compliance, the EPA generally 
rely on air quality measurements made by 
expensive ground-based monitors which 
unfortunately limits the spatial extent of air quality 
networks.  In order to overcome this limitation, 
satellite remote sensing of aerosol path integrated 
properties has become a major tool. 

In particular, significant efforts have been 
made to connect Aerosol Optical Depth (AOD), 
which is a measure of the path integrated aerosol 
extinction, to estimate ground-level PM2.5; 
however, a wide range of factors such as aerosols 
variability, meteorology and the vertical structure 
of aerosols, which is often (but not always) 
constrained by the Planetary Boundary Layer 
(PBL) height, affect the relationship between AOD 
and PM2.5 [Tsai et al. (2009); Zhang et al. (2009); 
Boyouk et al. (2010]. 

In another approach, a global model (GEOS-
CHEM) is being used to estimate the spatial 
relationship between PM2.5 forecast and column 
path AOD on a daily basis.  This approach is 
currently being used by IDEA (Infusing satellite 
Data into Environmental air quality Applications) 
providing real time spatial maps of PM2.5 [van 
Donkelaar (2012].  Unfortunately, the low spatial 
resolution (0.5 deg) reduce the effectiveness of 
this approach in dealing with urban-suburban 
domains.  To improve on this, the WFR/CMAQ 
model is used.  This is a high-resolution algorithm 
that accounts for physical meteorological factors 
and surface boundary conditions including 
emission inventories to estimate particulate 
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concentrations and vertical distributions [Hu et al. 
(2010); Hogrefe et al. (2011)]. 

In this paper, we first focus on local ground 
measurements from a CIMEL sun/sky radiometer, 
LIDAR and TEOM instruments at The City College 
of New York (CCNY) to explore a neural network 
(NN) approach at one urban location.  In 
particular, we assess the importance of ingesting 
the lidar derived planetary boundary layer height 
into the NN fine particulate matter estimator.  
Later, we discuss a NN method over the entire NY 
state region ingesting WRF meteorological 
information and compare its performance to 
existing GEOS-CHEM and CMAQ products. 
 

2. METHODOLOGY 
 

We used a total of 41 stations from the New 
York state area, and perform regional seasonal 
comparisons between ground PM2.5 and 
satellite/model PM2.5.  Figure 1 illustrates the NY 
state area and the locations of the stations as well 
as the urban classification, which is primarily 
based on site location; mostly, stations located in 
the New York City metro area are depicted as 
urban.  

 

 
Figure 1. New York State station mapping: red 

squares are urban stations and blue circles are non-
urban stations. 

 
In order to assess the PM2.5-AOD 

relationship, we have collected hourly satellite 
AOD data from the Moderate Resolution Imaging 
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and AQUA for the period corresponding from 
January 1, 2006 to December 31, 2007.  Also, 
hourly PM2.5 data from the New York State 
Department of Environmental Conservation 
(NYSDEC) have been collected along with 
Community Multiscale Air Quality - Weather 
Research Forecast (CMAQ-WRF) planetary 
boundary layer height.  Datasets are converted to 
daily averages following EPA regulations for 
further comparisons with GEOS-CHEM  and 
CMAQ products.  

Additionally, a dataset corresponding to 
measurements acquired from an AERONET 
(AErosol RObotic NETwork) Cimel sun/sky 
radiometer (CE-318), a Lidar (Light Detection and 
Ranging) and a TEOM (Tapered Element 
Oscillating Microbalance) instruments plus 
meteorological information (relative humidity, wind 
speed, etc.) have been used to perform initial 
comparisons between ground measurements 
versus satellite and model products.  These 
instruments are located at the City College of New 
York (CCNY, 40.821 °N/73.949 °W) and therefore 
this analysis is limited to one urban station. 

 

3. RESULTS 
 
3.1 PBL height and seasonality 
assessment on a local neural network 

 
While strong correlations can be found 

connecting AOD to PM2.5 in the northeast, PBL 
height information can provide significant 
improvements.  This may be due to the fact that 
the PBL typically contains greater aerosol 
concentration than the overlying troposphere and 

hence has larger backscatter.  The PBL height is 
higher during late afternoon in the summer 
(HPBL>1.5km) and smaller (HPBL<1.2km) during 
most of the winter and fall.  

In addition to PBL height information, we 
explored the potential effect of other variables 
such as temperature and relative humidity in 
combination with total AOD as inputs to the neural 
network as well as the seasonal effect.  Figure 2 
illustrates the outcome from this experiment and 
as expected, due to the well-mixed PBL 
development in an urban environment, summer 
returned the highest performance (R~0.94 and 
RMSE~0.27) in comparison to other seasons and 
yearly estimations (R~0.77 for fall and spring, 
R~0.87 for winter and R~0.75 for year).  

 

3.2 Regional neural network 
 
From our previous results, we've seen the 

importance of including PBL information as well as 
the seasonal factor in our NN approach.  Then, 
our regional experiment uses MODIS AOD and 
WRF PBL daily data to estimate 24-hour in-situ 
PM2.5 measurements which we compare against 
the GEOS-CHEM estimated fine PM and the 
CMAQ PM2.5 product.  Figure 3 illustrates the 
results for summer comparisons.  

As we can observe, the NN estimated output 
returns the highest correlation when compared to 
in-situ measurements against the other two 
approaches (RNN~0.73, RGEOS-CHEM~0.61,   
RCMAQ~0.69).  GEOS-CHEM estimations seem to 
return the largest errors which mainly come from 
fine PM overestimations. 

 
(a) 

 

(b) 

 

 

Figure 2. NN estimated PM2.5 vs. ground PM2.5 (a) seasonal correlation and (b) root-mean-square-error. 
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(a)  

 
(b) 

 
(c)  

 
Figure 3. PM2.5 summer comparisons between ground 
PM2.5 and estimated  PM2.5 from (a) GEOS-CHEM, (b) 
CMAQ and (c) neural network (AOD+PBL). 

 
Moreover, we performed other seasons and 

yearly comparisons using the three methods and 
illustrate their correlation values in Figure 4. We 
see a higher performance of the neural network in 
fall (R~0.77) as well as the lowest correlation for 
GEOS-CHEM and CMAQ PM2.5 products (RGEOS-

CHEM~0.56, RCMAQ~0.55).  Spring comparisons 
using the neural network and CMAQ PM2.5 
resulted in similar values (R~0.64).  Additionally, 
because of the lack of satellite measurements 
during winter, there are no comparisons during 
this season.  In general, the NN estimated fine PM 
performs better than GEOSCHEM and CMAQ 

outputs when taking into consideration PBL height 
and seasonality into our NN scheme. 

 

 

Figure 4. PM2.5 correlation comparisons using NN, 
GEOS-CHEM and CMAQ outputs. 

 

3.3 Implementing NN for PM2.5 mapping  
 

In order to estimate fine PM to conform with 
EPA standards, we use daily AOD retrievals 
together with WRF PBL measurements to illustrate 
our NN performance as a spatial map.  However, 
even in a “good” case, cloud cover can 
significantly reduce spatial coverage.  Therefore, 
we iteratively apply inverse distance weighted 
(IDW) averages of the data as defined in (1) to 
improve spatial coverage while using a 0.1 degree 
radial domain.  
 

       
  

   

    
 
   

  
 

    
 
   

                    (1) (1) 

 
Figure 5 shows MODIS AOD, WRF PBL and 

estimated fine PM maps for July 18, 2006 and the 
scatter plot between stations measurements and 
NN estimations.  Figure 5a-b shows the improved-
spatial-coverage for both AOD and PBL.  Figure 
5c displays the NY regional PM2.5 map obtained 
from our neural network together plus the station 
readings in that particulate date.  We see a good 
agreement between station and estimations data 
with low PM2.5 values observed in the non-urban 
region while high fine PM values are observed in 
the metropolitan area. 

Figure 5d shows the scatter plot between 
ground measurements and NN estimations at the 
corresponding stations available in this particulate 
date.  In general, neural network estimations are 
underestimated in comparison to the site data. 
However, good statistics are obtained for the 
specific date illustrated (July 18, 2006) (R~0.90, 
RMSE~0.20).  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

Figure 5. Improved spatial coverage based on IDW for (a) MODIS AOD daily average,  (b) WRF PBL daily average, 
(c) PM2.5 daily average estimations based on the NN approach and (d) fine PM comparisons between ground 
measurements and NN estimations on July 18, 2006. 

 

3.4 Assessment using satellite remote 
sensing variables 
 

In this section we focus on satellite 
observations, and study their influence on PM2.5 
estimations.  However, before training the NN, a 
careful choice of variables should be made since 
the presence of redundant information may result 
in less robust solutions.   

 

 
Figure 6. Correlation map between 21 satellite 
variables. 

 

We reduced the number of inputs by removing 
the higher correlated variables (R>0.5).  Figure 6 
shows the correlation coefficient between the 21 
candidate  satellite variables.  After removing the 
highly correlated variables (for example, 
“Corrected Optical Depth Land” at different 
wavelengths), our input set to NN included the 
seven input variables listed in Table 1.  

 

Table 1 - Satellite input variables for NN. 

Variable 
Wavelength 

(μm) 

Solar_Zenith  -- 
Solar_Azimuth  -- 
Sensor_Zenith  -- 
Sensor_Azimuth  -- 
Scattering_Angle  -- 
Optical_Depth_Land_And_Ocean  0.55  
Mean_Reflectance_Land_All  2.1 

 
Figure 7 shows the result of the multivariate 

NN training with the 7 satellite variables taken as 
the input and the ground station PM data as the 
target.  In particular, we find that the multivariate 
satellite model using only the satellite remote 
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sensing input variables are found to have the 
highest correlation with the target in comparison to 
the other methods.  This clearly motivates further 
investigation of infusing surface as well as PBL 
height meteorological inputs.  

 

6. CONCLUSIONS 
 

Our main focus in this work was to 
demonstrate that regionally trained NN 
approaches are more accurate with less bias that 
operational approaches which do not directly input 
regional information.  Before exploring the regional 
satellite based approach, we used combined 
active/passive radiometer and lidar measurements 
to assess PM2.5 estimations.  First, we 
established that adding lidar derived PBL 
significantly improved the correlation between the 
estimated and observed PM2.5.  Therefore, it is 
the most important factor that must be accounted 
for, which is particularly reasonable for urban 
conditions when convective mixing is expected to 
be magnified.  In addition, we also investigated the 
importance of seasonality into the PM2.5-AOD 
relationship because PBL and other factors, which 
affect physical and chemical properties of aerosol, 
also depend on seasons.  We found that separate 
seasonal training can provide considerable 
improvements too.  

The success of the local experiments 
motivated the study of combining satellite AOD 
and WRF PBL height where seasonal factors were 
integrated into the training.  These results were 
compared against GEOS-CHEM estimated PM2.5 
and modeled PM2.5 product from CMAQ.  We 
found that the regionally trained NN performed 
significantly better with much less over-bias at low 
PM2.5 values.  

As an application, we developed daily PM2.5 
maps based on the NN approach using high 
resolution AOD and PBL grids for the NY state 

region.  Since the spatial coverage was still 
sparse, we applied an inverse distance weighting 
(IDW) method to both AOD and PBL products to 
obtain better spatial coverage.  The resulting maps 
were in good agreement with station data.  

Finally, we also explored the potential of 
adding geometric and land surface satellite 
variables as additional regressors to the neural 
network.  The results showed better correlation 
and even lower biases at high PM25.  Additional 
research is in progress to include other 
meteorological information as well as neighboring 
states ground PM2.5 information in order to 
improve the robustness of the NN approach. 

 
ACKNOWLEDGMENTS 
 

This project was made possible by the 
National Oceanic and Atmospheric Administration, 
Office of Education Educational Partnership 
Program award NA11SEC4810004 as well as 
NYSERDA under grant # 22885.  Its contents are 
solely the responsibility of the award recipient and 
do not necessarily represent the official views of 
the U.S. Department of Commerce, National 
Oceanic and Atmospheric Administration (NOAA) 
or New York State Energy Research and 
Development Authority (NYSERDA). 
 

8. REFERENCES 
 

[1] Boyouk, N., J. F. Leon, H. Delbarre, T. Podvin 
and C. Deroo, 2010: Impact of the mixing 
boundary layer on the relationship between 
PM2.5 and aerosol optical thickness. J Atmos. 
Environ., 44, 271-277. 

[2] Hoff, R.M. and S. A. Christopher, 2009: 
Remote sensing of particulate pollution from 
space: have we reached the promised land? J. 
Air. & Waste Manage. Assoc., 59, 645-675. 

[3] Hogrefe. C., P. Doraiswamy, B. Colle, K. 
Demerjian, W. Hao, M. Beauharnois, M. 
Erickson, M. Souders and J.-Y. Ku, 2011: 
Effects of Grid Resolution and Perturbations in 
Meteorology and Emissions on Air Quality 
Simulations Over the Greater New York City 
Region. 10th Annual CMAS Conference, 
Chapel Hill, NC. 

[4] Hu, X., J. W. Nielsen-Gammon and F. Zhang, 
2010: Evaluation of Three Planetary Boundary 
Layer Schemes in the WRF Model. J. Appl. 
Meteor. Climatol., 49, 1831–1844. 

[5] Pope, C. A., III, R. T. Burnett, M. J. Thun, E. 
E. Calle, D. Krewski, K. Ito, et al. 2002: Lung 
cancer, cardiopulmonary mortality, and long-
term exposure to fine particulate air pollution. 
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