October 17, 2012

Source Attribution of Attainment and Exposure-Based Ozone Metrics

Amanda Pappin, Amir Hakami Department of Civil and Environmental Engineering Carleton University

Outline

- regulatory standards
- sensitivity methods
- adjoint response of policy metrics:
 - attainment
 - exposure

Ozone Standards

threshold-based standards are devised to protect public health

- design value = fourth-highest concentration measured in a year, averaged over 3 years, not to exceed 75 ppb (65 in Canada)
- daily maximum 8-hr average

all locations have equal weighting

versus Exposure Metrics

locations are weighted by population e.g. mortality, health "damages" ...and thus different responses to emission controls

An ideal regulatory approach would differentiate between source impacts

preferential targeting of the most "damaging" emissions

Adjoint Sensitivity Analysis

where influences come from

Adjoint Cost Functions

- 1. "probabilistic" attainment metric
- 2. exposure metric

Possible Cost Functions

- 4th-highest simulated concentration
- probability of non-attainment
- probability-weighted concentrations

Adjoint Cost Function (1)

Attainment

• average design value ($C_{4-highest} > 65$ ppb) in Canada & U.S.

$$J = \frac{1}{N_{i,j}} \sum_{i,j} \left(\frac{1}{P} \sum_{t=1}^{92} P_t C_t \right)$$

 C_t = simulated max 8-hr avg ozone concentration for day "t" P_t = probability that C_t is among the fourth-highest simulated concentrations ⁹²

$$P = \sum_{t=1}^{52} P_t$$

Adjoint Cost Function (1)

Attainment

• average design value ($C_{4-highest} > 65$ ppb) in Canada & U.S.

$$J = \frac{1}{N_{i,j}} \sum_{i,j} \left(\frac{1}{P} \sum_{t=1}^{92} P_t C_t \right)$$

Adjoint Cost Function (2)

Exposure

short-term mortality in Canada & U.S.

$$J = \sum_{i,j} M_0 \cdot Pop \cdot e^{\beta \cdot C}$$

 M_0 = non-accidental mortality rate

Pop = population

 β = pollutant response coefficient, 0.0427% per ppb

 $C = \max 8$ -hr avg ozone concentration

Adjoint Cost Function (2)

Exposure

short-term mortality in Canada & U.S.

$$J = \sum_{i,i} M_0 \cdot Pop \cdot e^{\beta \cdot C}$$

Case Study

- Gas-phase CMAQ adjoint (4.5.1)
- North American domain
- 36 km resolution
- 34 vertical layers
- July-Sept 2007

Attainment

Exposure

Attainment

VS.

Exposure

Combined response of attainment and exposure metrics

Is there a way to directly account for population exposure in regulation?

Interested in CMAQ-adjoint?

Thank you.

Back-up Slides

Adjoint Cost Functions

Attainment

$$P_{i} = \sum_{j=0}^{3} {n \choose j} \cdot \left(P(C \ge C_{O_{3},i}) \right)^{j} \cdot \left(P(C \le C_{O_{3},i}) \right)^{n-j}$$

Attainment

