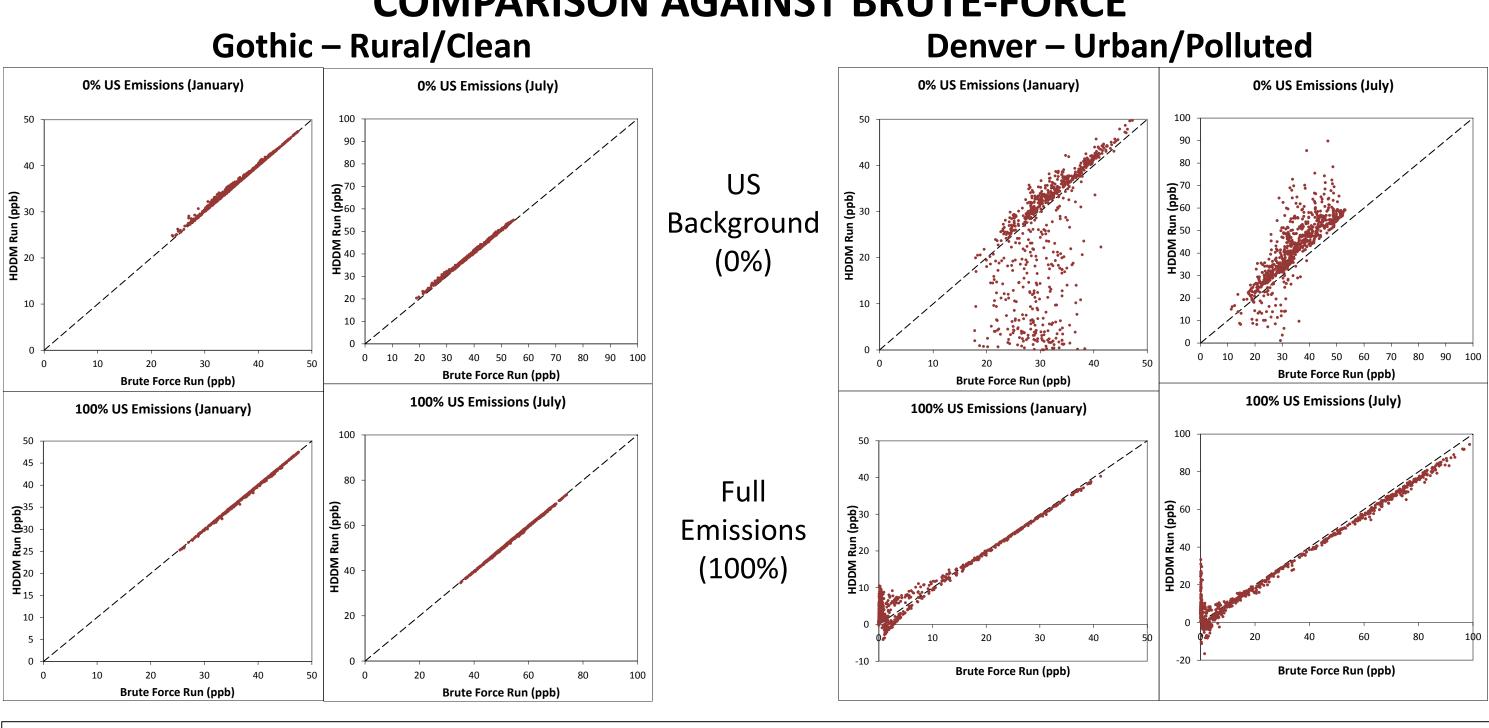


Earth System SCIENCES, LLC

2012 CMAS Conference

BACKGROUND

- EPA is assessing health risk for 16 cities over 2006-2010 at alternative ozone standards (EPA, 2012)
- Health risk models use hourly ozone monitor data
- Hourly data are rolled back to just meet alternative standards
- Past assessments applied simple linear and quadratic rollback techniques uniformly to all sites in each city
- Model-based rollback using HDDM is a better approach
- Allows site-specific rollback and realistic nonlinear ozone responses
- Eliminates running multitude of "brute-force" emission scenarios
- Subject to usual model uncertainty and higherorder truncation errors
- **OBJECTIVE:** Run CAMx with HDDM for 2006 at high resolution over the entire US
 - Evaluate against "brute force" 0%/100% US anthropogenic emissions
 - Evaluate against quadratic rollback
 - Develop efficient methods to estimate 1-hour ozone time series at any location


ACKOWLEDGEMENTS

This project was funded by the American Petroleum Institute

We develop and evaluate a method for estimating annual time-series of hourly ozone anywhere in the US at any US anthropogenic emission lev between 100% and zero. A single CAMx photochemical model run with HDDM measures first and second-order ozone sensitivity to emissions a across-the-board NOx and VOC reductions from a 2006 baseline. Accuracy of the HDDM ozone projections is evaluated by comparison with bru simulations with 100% and 0% US anthropogenic emissions. A post-processing macro efficiently generates ozone time series at all CASTNET site AQS monitoring sites in 23 cities for any NOx or VOC emission level. Ozone responses are complex, and HDDM can account for spatio-temporal influences from meteorology, emissions, and chemistry. Relative to quadratic rollback, HDDM estimates more realistic ozone response through entire site-specific frequency distribution and lessens exposure reductions.

 $\Delta O_3 (ppb) = X \cdot S^1_{NOx} + Y \cdot S^1_{VOC} + (X^2 \cdot S^2_{NOx}/2) + (Y^2 \cdot S^2_{VOC}/2) + (X \cdot Y \cdot S^2_{NOxVOC}/2)$

- Comprehensive A 2006 12-km US
- AQMEII US em
- 50% across-the
- Hourly HDDM
- Macro tool eva
- 361 urban AQS

Using CAMx/HDDM to Estimate Ozone Response to US **Anthropogenic NOx and VOC Reductions** Chris Emery¹, Nicole Downey², Jaegun Jung¹, Tanarit Sakulyanontvittaya¹, Greg Yarwood¹

¹ENVIRON International Corporation, Novato, CA ²Earth System Sciences, LLC, Houston, TX

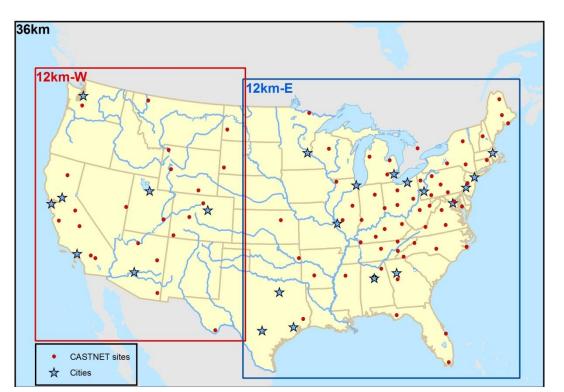
SUMMARY

APPROACH AND RESULTS

 $\partial O_3 / \partial NO_x$

 $\partial O_3 / \partial V O C$

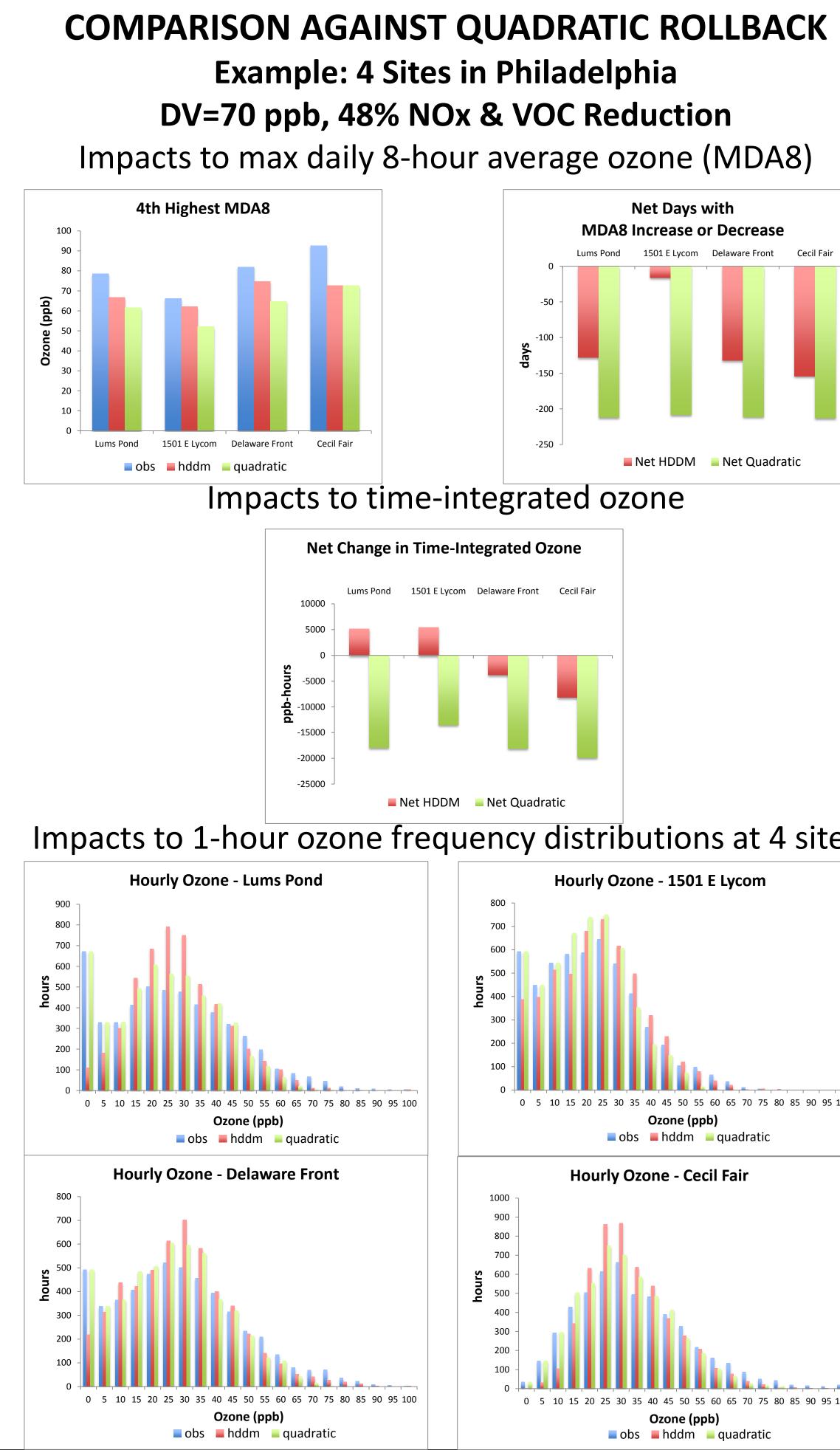
 $\partial^2 O_3 / \partial NO_x$


 $\partial^2 O_3 / \partial VOC^2$

= $\partial^2 O_3 / \partial NO_x \cdot \partial VOC$

APPROACH

High-order Decoupled Direct Method (HDDM) calculates 1st and 2nd order sensitivities (derivatives) of ozone to changes in NOx and VOC


Air quality Model with extensions (CAMx v5.40)
S-wide CAMx modeling (Emery et al., 2012)
nissions/meteorological dataset (Rao et al., 2010)
e-board US anthropogenic NOx and VOC emissions
ozone sensitivity to US-wide NOx, VOC and NOx+VOC
aluates emissions scenarios at 79 rural CASTNET sites,
S sites in 23 US cities

COMPARISON AGAINST BRUTE-FORCE

Emery, C., J. Jung, N. Downey, J. Johnson, M. Jimenez, G. Yarwood, R. Morris, 2012. Regional and global modeling estimates of policy relevant background ozone over the United States. *Atmospheric Environment,* doi:10.1016/j.atmosenv.2011.11.012.

EPA, 2012. Health Risk and Exposure Assessment for Ozone, First External Review Draft. US Environmental Protection Agency, Research Triangle Park, North Carolina (EPA 452/P-12-001 Rao, S.T., Galmarini, S., Puckett, K., 2011. Air Quality Model Evaluation International Initiative (AQMEII): advancing state-of-science in regional photochemical modeling and its applicatio of the American Meteorological Society, doi:10.1175/2010BAMS3069.1.

ENVIRON

	DISCUSSION
vel at 50% rute force tes and al hout the	 HDDM vs. Brute-Force Compares well at rural sites with little anthro contribution Good agreement at urban sites for 100% (base) emissions Poor agreement at urban sites for 0% (background) emissions For now, focus on 50-100% of base emissions (upper end) HDDM vs. Quadratic Rollback HDDM vs. Quadratic Rollback HDDM vs. Quadratic Rollback HDDM vs. Quadratic Rollback HDDM usually (not always) leads to smaller reductions of high ozone HDDM shifts low ozone upward toward simulated background Net HDDM ozone impact lessens exposure reduction Intra-urban differences are important and unique
	FUTURE DIRECTIONS
^{95 100} 95 100 S. D1, July 2012). ons. <i>Bulletin</i>	 New HDDM run near background to improve method Address policy-relevant questions (e.g., ozone distributions with minimal emissions, reductions necessary to meet alternative standards) Compare to other approaches