The Implications of Uncertain NO2 + OH for Ozone
and Precursors

Barron H. Henderson', Rob W. Pinder', James Crooks?,
Farhan Akhtar!, Havala O.T. Pye', William Vizuete?

T Atmospheric Modeling and Analysis Division, U.S. EPA
2Biostatistics and Bioinformatics Research Core, U.S. EPA
3Dept. of Environmental Science and Engineering UNC Chapel Hill

October 26, 2011

UNC ,
i caanente. barronh@gmail.com




Ozone Overview

» Secondary chemical: not emitted, but formed
» National Ambient Air Quality Standard criteria pollutant
» Third largest positive short-lived climate forcer

YOG + Heat & Sunlight = Ozone
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Ozone Chemical Formation Primer
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NO, + HO" — HNOj: Important, Uncertain
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» JPLs recommended rate is 11% below IUPAC’s
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» rate from latest lab data (all at 298 K) is 13% below JPL
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Modeling framework

» Simulates air parcels post-convection event, identified by

NO,/HNO4

» Initial conditions from aircraft measurements

Stochastic model of subsidence following convection
Mixing with background air
ISORROPIA for aerosol partitioning
Heterogeneous reactions for N205, HO2, NO2, etc.
Gas-phase chemistry: GEOS-Chem and Carbon Bond 05

» Results: under-predicts NO, and over-predicts oxidation rate

Henderson et al., ACP 2011
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Constraining K(NO, + OH) from observations
» Uncertainty range from Jet Propulsion Laboratory Kinetic Data
Evaluation 2011

NO, + OH — HNO,

.59 0.70 0.84 1.00 1.19 1.43 1.70
(—30) uncertainty factor (+30)
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Constraining K(NO, + OH) from observations
® p= p(K—3U)7 "‘7p(K30')

NO, + OH — HNO,

.59 0.70 0.84 1.00 1.19 1.43 1.70
(—30) uncertainty factor (+30)

—  p~log N (1,0.18)
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Constraining K(NO, + OH) from observations
*p :p(K—3U)7"‘7p(K30)

» Using model results, we calculate the likelihood of the observations
given each possible rate (L(O|K))

L = H ?_30(0,'), ey H ?SJ(OI)
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Constraining K(NO, + OH) from observations
*p :p(K—3U)7"‘7p(KSU)

» Using model results, we calculate the likelihood of the observations
given each possible rate (L(O|K))

» Bayes Theorem
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Constraining K(NO, + OH) from observations
*p :p(K—3U)7"‘7p(KSU)

» Using model results, we calculate the likelihood of the observations
given each possible rate (L(O|K))

» Bayes Theorem
» More details at Henderson et al., ACPD 2011
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Constrained Reaction Rate

NO, + OH — HNO,

8.59 0.70 0.84 1.00 1.19 1.43 1.70
(—30) uncertainty factor (+30)

— p~logN(1,0.18) -8 P~logN(0.78,0.05)




Uncertainty in NO, + HO™ — HNO4
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Uncertainty in NO, + HO™ — HNO4
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* JPL's recommended rate is 11% below IUPAC’s
» rate from latest lab data (all at 298 K) is 13% below JPL
» this work is 11% below rate from latest lab data at 241 K




Uncertainty in NO, + HO™ — HNO4
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Implications depend on scale of interest
Urban, Regional, Continental: CAMx

» TCEQ SIP Modeling for Houston

» Episode: July 26-Aug 8 2005

» Domains: 36k-Eastern US; 12k-Texas; 4k-Harris County; 2k-Houston

» Focus

» Max daily 8h average (MDAS8)
» Responsiveness to 20% NOx emission change
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Urban scale (4k - Harris Cnty): Top 4 MDAS8
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Urban scale (4k - Harris Cnty): Top 4 MDAS8
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» Sensitivity consistent with Cohan et al., 2010 (AE)




Urban scale (4k - Harris Cnty): Top 4 MDAS8
Mixing Ratio Percent (Diff / Std * 100)
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4km - Harris County): AO;080%E(NO
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4km - Harris County): AO;080%E(NO,)
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» Second order sensitivity lower than Cohan et al., 2010 (AE), most
likely because of non-linearity of local-sensitivity




4km - Harris County): AO,080%E (NO,)
Standard Response Ratio (New/Std)
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Implications depend on scale of interest
Global: GEOS-Chem

» INTEX-NA 2004 campaign » Emissions following Hudman
» 2° x 2.5° with GEOS-5 JGR 2007
meteorology » Focus: Mean ozone change;

» 1 year spin-up responsiveness to emissions
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Low Trop Ozone: Influences West Coast
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Low Trop Ozone: Influences West Coast
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Mid Trop Ozone: Influences Interior US




Mid Trop Ozone: Influences Interior US




Upper Trop Ozone: Climate Forcing
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Upper Trop Ozone: Climate Forcing
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» Created a new evaluation framework — published in ACP 2011
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Conclusions

» Created a new evaluation framework — published in ACP 2011
» Bayesian inference — submitted to ACP in July 2011

» Confirms laboratory based rate reduction
» Recommends further reduction at low temperature

Implemented new rate in Global, Regional, and Urban scales

» Small (< 4%) increases for the maximum daily 8 hour average

* Medium (> 6 — 12%) increases for US background concentrations

» Effect increases with altitude
» maximum daily 8 hour average results do not account for increased
boundary conditions

Using the model in a relative sense is largely unaffected
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