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Environmental impacts NH3 

Estimated N deposition from NHx, Dentener et al. (2006).  

Denman et al. (2007), IPCC: NH3 emissions to double by 2050. 

Galloway et al. (2008), Science: Importance of atmospheric NHx 
transport   

Schlesinger (2009), PNAS:  a 46 Tg gap in N budget? 
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TES: remote sensing of NH3 
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Footprint size: 

“covers” globe  
in 16 days 

Vertical profile yields 
 ~1 DOF near 900 hPa 

Beer et al., 2008 



Inverse modeling: NH3  
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Optimized

Sum changes to NH3 over U.S., compare to other inverse modeling 
(Gilliland et al., 2006) and bottom up (Pinder et al., 2006) 

Seasonal peak in April or July? (Henze et al., 2009) 



NH3 emissions variability and uncertainty: 
Beusen et al. (2008) 

Source types 
 - housing mixed 
 - housing pastoral 
 - grazing mixed 
 - grazing pastoral 
 - spreading cropland 
 - spreading grassland 
 - fertilizer cropland 
 - fertilizer grassland  

Global animal  
NH3 emissions 



Model: estimates,    , and parameters, 

Model sensitivity 

Ideally, want model Jacobian,  ∂c
∂p

=
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but it is generally much too large to calculate. 



Forward sensitivity 



Adjoint sensitivity 



Forward model v6-02-05  (Bey et al., 2001; Park et al., 2004) 

  

4D-Var with GEOS-Chem Adjoint Model 

emissions (gas) 
SO2, NOx, NH3 

Aerosol  
SO4

2-, NO3
-,  

NH4
+ 

Gas-phase chemistry 
Heterogeneous chem 

Cloud processing 
Aerosol thermo 

All included in adjoint (Henze et al., 2007) 

Calculates sensitivity of single model response w.r.t. all  
model parameters in t = 3 x tforward 



Testing the Adjoint Model: Gradient Check 

Check gradient using finite difference calculation 

Component-wise analysis affords domain wide points-of-
comparison  (e.g., Hakami et al., 2007) 

model response 

control parameter (emissions) 

adjoint sensitivity 



Adjoint model validation 
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Figure 2: Validation of adjoint model sensitivities via comparison to finite difference (FD) results
for week-long simulations. Solid lines are 1:1, dashed are regressions with given r2 and slope m. (a)
Global tests of the 1-D adjoint model: sensitivities of nitrate aerosol with respect to NH3 emissions.
(b) Spot tests of the full adjoint model: change in direct aerosol radiative forcing from perturbations
(positive and negative) to SO2 emissions in eight different locations.

databases (CAC, BRAVO, NEI99) will be used for emissions over Canada, Mexico and the
U.S., respectively.

GEOS-Chem adjoint model The adjoint of the GEOS-Chem model was developed
specifically for inverse modeling of precursors of inorganic PM2.5 with explicit inclusion of gas-
phase chemistry, heterogeneous chemistry, and treatment of the thermodynamic couplings
of the sulfate - ammonium - nitrate - water aerosol system (Henze et al., 2007). As the only
adjoint model to explicitly represent this system, it is uniquely capable of exploiting both
gaseous and particulate measurements in novel ways. Since its initial development, several
advances have been made in the capabilities of the GEOS-Chem adjoint. An up-to-date
list of features is available at the GEOS-Chem adjoint wiki.1 In addition to the previously
mentioned work of Henze et al. (2008), recent applications of the GEOS-Chem adjoint include
inverse modeling of CO emissions in Asia (Kopacz et al., 2009) and calculation of long-range
influences on observed O3 concentrations in the western United States.2

Verification of the adjoint model is an important yet challenging task. The most common

1http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem Adjoint
2Zhang, L., D. J. Jacob, M. Kopacz, D. K. Henze, and D. A. Jaffe, Intercontinental source attribution of

ozone pollution at western U.S. sites using an adjoint method, submitted to Geophys. Res. Let.
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Sensitivity of nitrate aerosol w.r.t ammonia emissions,  
1 week, all processes other than horizontal transport 



Potential for further constraints:  
TES coverage for 2 weeks in July 2005 

TES GS Footprints, July 4-19, 2005

data selection: lat = [30.,45.], lon = [-110, -90.]; total number of profiles: 115



Adjoint sensitivities of modeled NH3 retrievals   

Sensitivities show the origins of the NH3 that eventually 
will be “observed” by TES  



Sensi&vity of TES observa&on in the track highlighted on 
previous slide to NH3  emissions from the week prior 

x

x
x
x

x
x
x



Forward Model  

t0 tf 

Inverse Modeling: twin experiment 

Parameter Estimate 

Simulated NH3 field 

p = 2pa

c(x, t)
Pseudo retrievals, IMPROVE observations 



Inverse Model 

Forward Model  Adjoint Model 

t0 tf tf 

Inverse Modeling using Adjoint Model 

Parameter Estimate 

Predictions 



Cost function 

~(model-pseudo_obs)2 

Inverse Model 
Optimization 

Forward Model  Adjoint Model 

t0 tf tf t0 

Inverse Modeling using Adjoint Model 

Adjoint Forcing 

Improved  
Estimate 

Parameter Estimate 

Gradients 
(sensitivities) 

p′ = 2pa ?



Inverse modeling tests with different obs 

Using IMPROVE SO4, NO3 Using TES NH3 

Using both 

σ = ln(p/pa)



Ongoing efforts 

- Model transport bias – use GEOS 3 /4 / 5 met fields 

- Intercomparison of TES / in situ obs / CMAQ 

- Retrieval bias 

 - inversion that starts with doubled emissions 

high bias? 



Final Remarks 

-  Remote sensing of NH3 provides valuable constraints 

-  Multiple types of gas and aerosol observations 
required to constrain NH3 emissions 

- Adjoint approach spreads information from NH3 
observations across wide domain 

-  How well can we constrain magnitudes vs locations? 
 Are we aliasing for bi-directional flux? 



the end 



Satellite: indirect observations 

Arriving at an NH3 “observation” is an inverse problem 
itself.  
 - ill posed (multiple atmospheric states look alike) 
 - constraints required 

Satellite products are a mix of measured and modeled 
quantities. 
 - model estimates used for initial profile 
 - profile scaled to match observations 
 - influence of model estimate can be removed 



Global modeling support of NH3 retrievals 

GEOS-Chem surface level (July) Vertical variance 



Retrieval tests: simulated NH3 

1.  Simulate NH3 from a doubled emissions model run 
2. Model what TES would see if “doubled” was truth 
3.  Starting from non-doubled run, can truth be recovered? 



Validating TES NH3 with surface observations 

x = CAMNet NH3 obs  (John Walker, EPA) 

Standard overlap with North Carolina CAMNet sites 



Validating TES NH3 with surface 
observations 

Overlap with TES Transects for 2009  
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NH4
+ monitoring 

CASTNet 

STN: another 200 sites 



Checking ion balance: 
 n(NH4

+) : 2n(SO4
2-) + n(NO3

-) 

CASTNet, all sites,  
2005-2006  (R. Pinder) 

Field campaigns 
(Sorooshian et al.) 

SJ 
Valley 

Houston 

Issues with evaporation 

January 

April 



NH3 Monitoring Sites 

EPA’s new AMoN sites (Gary Lear) 



New NH3 observations 



Why top-down constraints? 

... because direct measurements of NH3 
emissions are rare, if not entirely absent 

NH3 

HNO3 
NO2  + OH  

N2O5  + H2O  

NOx 
 NO3
- 


NH4
+

 

gas-phase thermo aerosol-phase 

Emissions


SO2 
SO2 + OH 

SO2 + O3 , H2O2 

SO4
2- H2SO4 

wet and dry loss


emissions




NH3 inverse modeling:  
Gilliland et al. 

Observations: wet NHx =  aerosol NH4
+ + gas NH3   

Method: Kalman filter (BF) to adjust monthly nation-
wide scale factors 

Results: 

Gilliland et al., 2003;  
Gilliland et al., 2006 

2003 
2006 

Historic EPA NEI, 
Bouwman et al, 1997  



IMPROVE 

Measures sulfate and nitrate.   



Inverse modeling: anthro NH3 emissions 

NH3 prior NH3 opt ln(opt/prior)

Apr

Jul

Oct

Jan

3x1010 7x1010 1x10110.0 -2.0 -1.0 1.0 2.00.0

• scaling is spatially 
variable 

• scaling generally 
reductions 

• some increases 

• Each month  
treated separately 

• reduction in RMSE 
 ≈ 40% 



Inverse modeling: assessing the solution 

Dependence on inverse modeling assumptions: 
 - error covariance matrices 
 - regularization 

Estimated uncertainty of solution  
 - approximate inverse hessian 
 - std error and correlations 

Compare to other studies 
 - inverse modeling 
 - bottom up inventories 

Compare to NH3 observations 



Inverse modeling: variable constraints  

-40%


-30%
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Marker NH3 NOx SO2 

100% 30% 10% 

100% 50% 25% 

100% 100% 100% 

Repeat inversions with different emissions error estimates: 

ARP JUL OCT JAN 

NH3, and to lesser extent, NOx, emissions estimates fairly invariant 



Inverse: comparison to CASTNet NH4
+ 

CASTNet GC(prior) - CASTNet GC(opt) - CASTNet

Apr

Jul

Oct

Jan

-5.0 -2.5 2.5 5.00

NA
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 Air Pollution: Continental PM 

EPA AIRNow MODIS (TERRA) 

September 11, 2005 (smog blog, NASA’s visible earth) 



Secondary inorganic aerosol formation 

NH3 

HNO3 
NO2  + OH  

N2O5  + H2O  

NOx 
 NO3
- 


NH4
+

 

gas-phase thermo aerosol-phase 

Emissions


SO2 
SO2 + OH 

SO2 + O3 , H2O2 

SO4
2- H2SO4 

wet and dry loss


emissions




AQ Attainment: seasonal variability 

Seasonal variation in control effectiveness: 

±100 ±100

±100

±100

±25

±25 ±25±25

±10

±10

±10±10

NH3 NOx SOx 

Apr 

Jul 

Oct 

Jan 

Effectiveness of emissions controls have critical  
spatial, seasonal, sector and chemical variability 

(NH4
+)2SO4

2- (mw = 132)  2NH4
+NO3

- (mw = 2x80) Ansari and Pandis, 1998; West et al., 1999; Vayenas et al., 2005; 
Pinder et al., 2007 

CASTNet GC(prior) - CASTNet GC(opt) - CASTNet
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Why study NH3 emissions? 

Health impacts of PM2.5, air quality control 

Environmental impacts 

A large source of uncertainty  



GEOS-Chem vs IMPROVE: nitrate 

 GEOS-Chem NO3
-  IMPROVE NO3

-

Apr

Jul

Oct

Jan

NA

nitrate problematic: Park et al., (2004,2006), Liao et al. (2007), Pye et al. (2008) 



GEOS-Chem vs IMPROVE: sulfate 

 GEOS-Chem SO42-  IMPROVE SO42-

Apr

Jul

Oct

Jan

NA



Inverse modeling: reduction in error 

 Nitrate forcing

 Using prior emissions Using optimized emissions

Apr

Jul

Oct

Jan

 -28                           +304  -28                             +99

 -30                            +94  -30                             +26

 -27                           +163  -27                             +21

 -31                           +143  -31                             +39

-200 -100 100 2000

• #’s in corner are 
min/max of forcing 

• Each month  
treated separately 

• reduction in RMSE 
 ≈ 40% 

= “forcing” 

∂J

∂Hc
= (Hc− cobs)T S−1

obs



Importance of studying NH3 emissions 

PM2.5 
 - Itself leads to NH4

+, 10-20% of PM2.5 mass concentration 
 - Governs formation of NO3

-, which can be 20-30% in winter 

PM2.5 NAAQS Regulations 
 - Not a presumptively regulated species, but can be very efficient 
(Pinder et al., 2007; Henze et al., 2008) 
 - Can be regulated in place of SO2 or NO2 

Ecosystem impacts 
 - 11% of worlds natural vegitation impacted by N dep (Dentener et 
al., 2006) 
 - N dep will increase 10-40% near NH3 sources in U.S. by 2020 
(Pinder et al., 2008) 

Very large source of uncertainty 
 - estimating U.S. inorganic PM2.5 levels (Yu et al., 2005; Simon et 
al., 2008) 
 - global N dep. (Sutton et al., 2007) 



Inverse modeling: impact on profile estimates compared to 
pseudo retrieval.  After only 4 iterations (would usually do 

about 20) 

NH3 [ppb] 

Pr
es
su
re
 [m

ba
r]
 

retv_vars.2960_0457_003.cdf, (32.99, ‐93.2), 2005/07/12 19:31 UTC  

Model itr 4 

Retrieval 
Model itr 1 



Define a cost func&on (want to minimize): 

Inverse modeling: cost function 

= Model predic&ons 
= Domain of observa&ons 
= Error covariance matrices 
= Regulariza&on parameter 
= free parameters, 

= ini&al guess of parameters (= 0) 

where 

“error” “penalty term” 

J =
1
2

∑

c∈Ω

(Hc− cobs)T S−1
obs(Hc− cobs) +

1
2
γr(σ − σa)T S−1

a (σ − σa)

σ

σa

σ = ln

(
emission

emissiona

)

Sobs

Sa

= 30% 

= 100% for NH3 
= 30% for NOx 
= 10% for SOx 



Inverse modeling: minimization 
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Regularization Parameter 

over filtering 

under filtering 

ln(Hc− cobs)2



Posterior Error Covariance Estimates 

Certainty ~ curvature at minimum 

More certain Less certain 

Can estimate inverse Hessian(J) by tracking the  
minimization 



NH3 emissions uncertainty 



GEOS-Chem vs IMPROVE: nitrate 

 GEOS-Chem NO3
-  IMPROVE NO3

-

Apr

Jul

Oct

Jan

NA



Inverse Model 
Optimization 

Forward Model  Adjoint Model 

t0 tf tf t0 

Inverse Modeling using Adjoint Model 

Adjoint Forcing 

Improved  
Estimate 

Parameter Estimate 

Predictions 

Gradients 
(sensitivities) 

Cost function 

~(model-obs)2 



Inverse modeling: other NH3 emissions 

ln(opt/prior)

Apr

Jul

Oct

Jan

NH3 BiofuelNH3 Biomass Burn NH3 Natural

-1.0 -0.5 0.5 1.00

• scaling results from 
product of adjoints 
with prior emissions 
estimates 

• reductions affect 
anthropogenic 
sources more than 
natural sources 

• results across 
sectors are correlated 

Can effectively distinguish between source sectors 



Sensitivities of various cost functions 

IMPROVE: J = J(SO4
2-, NO3

-) TES: J = J(NH3) 

BOTH: J = J(SO4
2-, NO3

-, NH3) 

Sensitivities with respect to anthro NH3 emissions:  



Why is the sensitivity positive in one spot? 

NH3 [ppm] 

Pr
es

su
re

 [
m

b
ar

] 

Retrieval 

Model itr 1 

Native model  

retv_vars.2945_0983_003.cdf, (36.4, -96.3), 2005/07/05 08:23 UTC  

Resolution issue? Retrieval limitation? 



Other locations perform better 

NH3 [ppb] 
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] 

retv_vars.2960_0457_003.cdf, (32.99, -93.2), 2005/07/12 19:31 UTC  

Model itr 4 

Retrieval 
Model itr 1 



Other locations perform better 

Retrieval 
Model itr 1 

NH3 [ppb] 

Pr
es

su
re

 [
m

b
ar

] 

retv_vars.2960_0457_003.cdf, (32.99, -93.2), 2005/07/12 19:31 UTC  

Model itr 6 

Model itr 6 TES ONLY 



“optimized” scaling factors 

Anthro NH3 emission scaling after 6 iterations 
IMPROVE: J = J(SO4

2-, NO3
-) 

BOTH: J = J(SO4
2-, NO3

-, NH3) 

target solution 

TES: J = J(NH3) 



Scaling for other inventories 

Surface level SO2 (SOx1) Stack SO2 (SOx2) 

Stack NOx (NOx2) Surface level NOx (SOx1) 

Anthro emission scaling after 6 iterations, J=J(BOTH) 



NH3 inverse modeling:  
Mendoza-Dominguez et al. (2001) 

Observations: PM2.5 (speciated and total), gas 
precursors (NOx, VOCs, SO2) 

Method: Kalman filter (DDM) to adjust single 
domain-wide scale factors 

Results: 

NH3 emissions scaling factors: 
 - May 22-29, 1995: 0.59 
 - July 09-19, 1995: 0.59 

Modeling domain 



90 million people live in counties which are in exceedance of  
NAAQS for PM2.5 of 15 µg/m3 (annual average). (EPA, 2003) 

Air Pollution: PM2.5 

Annual average PM2.5 concentrations, ug/m3 

NARSTO [2003]


> 15 

< 10 
10 - 15 



Cardiovascular disease, inhibited lung development, premature mortality

Pope, (2000); Pope et al., (2002); Gauderman et al., (2004)


Air Pollution: PM 

Annual average PM2.5 concentrations, ug/m3 

NARSTO [2003]


> 15 

< 10 
10 - 15 



Air Pollution: PM2.5 Composition 

Nitrate (NO3
-) 

Ammonium (NH4
+) 

Sulfate (SO4
2-) 

Crustal Species 

Carbon 
Species 



Air Pollution: PM2.5 Composition 

Ammonium Nitrate: 
 NH4NO3 

Ammonium Sulfate:  
(NH4)2SO4 



Inverse modeling: additional 
considerations 

How does solution depend upon initial error estimates? 

  

J =
1
2

∑

c∈Ω

(Hc− cobs)T S−1
obs(Hc− cobs) +

1
2
γr(σ − σa)T S−1

a (σ − σa)

vary “parameters” of the inversions 



Questions 

What do current network observations directly tell us 
about NH3 emissions? 

How can indirect observations and modeling be used 
to constrain NH3 emissions estimates?  

How do emission estimates affect emissions mitigation 
strategies? 

What new measurements required? 

- Not enough 



Questions 

What do current network observations directly tell us 
about NH3 emissions? 

How can indirect observations and modeling be used 
to constrain NH3 emissions estimates?  

How do emission estimates affect emissions mitigation 
strategies? 

What new measurements required? 



Inverse modeling and data assimilation 

Using observations to constrain emissions is an  
inverse problem. 

In data assimilation, models and measurements are 
combined to create an optimal estimate of the state 
of the system 



Questions 

What do current network observations directly tell us 
about NH3 emissions? 

How can indirect observations and modeling be used 
to constrain NH3 emissions estimates?  

How do emission estimates affect emissions mitigation 
strategies? 

What new measurements required? 

- can spatial variability be improved? 



Inverse Modeling: 4D-Var 

4D Variation Data Assimilation (Kalnay, 2003): 
 • Optimize parameters at resolution of forward model 
 • Forward model equations are strong constraints 



Inverse Modeling: 4D-Var 

4D Variation Data Assimilation (Kalnay, 2003): 
 • Optimize parameters at resolution of forward model 
 • Forward model equations are strong constraints 

Applications with GEOS-Chem adjoint: 
 • emissions estimates using remote sensing  
 - MOPITT CO (Kopacz et al., 2008) 
 - SCIAMACHY SO2, NO2 (C. Lee, C. Shim, Q. Li, R. V. Martin) 
 - TES O3 (K. Singh, A. Sandu, K. Bowman) 

 • NH3 emissions estimates using  surface obs. of  
    sulfate and nitrate (IMPROVE) 



Adjoint sensitivity 

Method for calculating sensitivity of a single, scalar model 
response with respect to numerous (i.e., 106) model parameters 
that is very computationally efficient:  

 time(adjoint model) = 3 * time(forward model) 



Questions 

What do current network observations directly tell us 
about NH3 emissions? 

How can indirect observations and modeling be used 
to constrain NH3 emissions estimates?  

How do emission estimates affect emissions mitigation 
strategies? 

What new measurements required? 



Questions 
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about NH3 emissions? 

How can indirect observations and modeling be used 
to constrain NH3 emissions estimates?  

How do emission estimates affect emissions mitigation 
strategies? 

What new measurements required? 



Collaborators 

Thanks to: 

   Mark Shepard, Karen Cady-Pereria,  
   
   
  Ming Luo, Kevin Bowman, TES team  

    Rob Pinder, John Walker  

   NASA GSFC: NCCS 
   NASA JPL: SCC 



Additional projects 

Assessing long-range influences on local air quality. 

ClimateWorks: optimizing energy strategies to minimize 
global warming potential of aerosols. 

-2.0 -1.0 1.0 2.00

-0.1 -0.05 0.05 0.10

-0.1 -0.05 0.05 0.10

-2.0 -1.0 1.0 2.00

Sensitivity of US O3 to alkane emissions 

BC fossil fuel SO2 shipping 



Additional projects 

WRF-Chem / Var:  how can chemical data assimilation 
improve weather and air quality forecasts? 

Chemistry of outer planets (sub. Liang et al.) 

Titan 

JPL chamber 



Directions 

Emissions inverse modeling tests 
 - simulate atmospheric NH3 field 
 - simulate TES NH3 observations 
 - can inverse model recover “true” emissions? 



Air Pollution: Regional  



Inverse modeling: uncertainty estimates 

Apr

Jul

Oct

Jan

ρNH3,NH3 ρNH3,NOx sNH3 

Error Correlations

-1.0 -0.5 0.5 1.00

NA

ρσm1 ,σm2
=

IHm1,m2

(IHm1,m1IHm2,m2)
1
2
.sσm = (IHm,m)

1
2

Inverse Hessian (IH) estimated by tracking progression towards 
minimum 



Inverse modeling: uncertainty estimates 

SOx 1 SOx 2 NH3 an NH3 na NOx 1 NOx 2 NOx s 

SOx 1 

SOx 2 

NH3 an 

NH3 na 

NOx 1 

NOx 2 

NOx s 

Correlation of emissions between species, same location 

ρσm1 ,σm2
=

IHm1,m2

(IHm1,m1IHm2,m2)
1
2
.



Adjoint modeling applications 

Depending on “model response,” can be used for: 

Sensitivity analysis: quantifying influence of uncertain 
model parameters (emissions, reaction rates, …) 
Response = Average concentrations of X in location Y... 

Inverse modeling: using large data sets, optimizing 
parameters on resolution commensurate with forward 
model. 
Response ~ sum(model – obs)2 

Attainment studies: assessing the effectiveness of 
emissions changes on an air quality 
Response = total amount of nonattainment 



Adjoint modeling: History 

From principles of functional analysis (Hilbert) 
   
Used extensively for optimal control problems (Lions, 1971) 
- nuclear reactor design (classified?!) 
- oceanography (Tziperman and Thacker, 1989) 
-  meteorology (Derber, 1985) 
-  aeronautics (Giles and Pierce, 2000) 
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Adjoint modeling: History 

From principles of functional analysis (Hilbert) 
   
Used extensively for optimal control problems (Lions, 1971) 
- nuclear reactor design (classified?!) 
- oceanography (Tziperman and Thacker, 1989) 
-  meteorology (Derber, 1985) 
-  aeronautics (Giles and Pierce, 2000) 

Atmospheric chemistry 
-  proposed for tracer analysis (Marchuk, 1974) 
-  stratospheric chemistry (Larry et al, 1995) 
- tropospheric chemistry (Elbern and Schmidt, 1999)  

Aerosols  
-  box model microphysics (Henze et al., 2004; Sandu et al., 2005) 
-  black carbon (tracer) (Hakami et al., 2005) 
-  coupled thermodynamics and chemistry (Henze et al., 2007) 
-  AOD (offline chemistry) (Dubovik et al., 2008)  



Inverse Modeling: 4D-Var 

4D Variation Data Assimilation (Kalnay, 2003): 
 • Optimize parameters at resolution of forward model 
 • Forward model equations are strong constraints 



Inverse Modeling: 4D-Var 

4D Variation Data Assimilation (Kalnay, 2003): 
 • Optimize parameters at resolution of forward model 
 • Forward model equations are strong constraints 

Applications with GEOS-Chem adjoint: 
 • Top down NH3 emissions estimates using  
   surface obs. of sulfate and nitrate (IMPROVE) 

 • Top down emissions estimates using remote sensing  
 - MOPITT CO (Kopacz et al., 2008) 
 - SCIAMACHY SO2, NO2 (C. Lee, C. Shim, Q. Li, R. V. Martin) 
 - TES O3 (K. Singh, A. Sandu, K. Bowman) 

 • Potential for combining aerosol and gas-phase obs. 
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Adjoint modeling applications 

Depending on “model response,” can be used for: 

Sensitivity analysis: quantifying influence of uncertain 
model parameters (emissions, reaction rates, initial 
conditions, …) 

Inverse modeling (Data Assimilation): using large data 
sets, optimizing parameters on resolution commensurate 
with forward model 

Attainment studies: assessing the effectiveness of 
emissions abatement on an air quality 



AQ Attainment 

Consider a representative metric of PM2.5 air quality,   

“Control effectiveness” = fully normalized sensitivities 
∂J

∂E
× E

J
× 100% ≈ #J [%]

#E/E

Calculate the sensitivity of this metric w.r.t. PM2.5 
precursor emissions,   . 

Map adjoint sensitivities: 

E
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AQ Attainment: sector specific influences 

Tables

Table 1. Emissions inventories treated as variable parameters.

Emitted species Source sectors considered

SOx surface (anthropogenic), stack (anthropogenic), ships, biomass burning, biofuel

NH3 anthropogenic, natural, biomass burning, biofuel

NOx surface (anthropogenic), stack (anthropogenic), lightning, soil

Table 2. The effects of prior parameter error on inversion results. Changes in the total continental U.S. emis-

sions from all source sectors and changes in the root mean squared error (RMSE) obtained using the inverse

modeling solutions obtained starting from three different sets of assumed standard errors for anthropogenic

emissions of NOx and SOx. In each case, errors from all other source sectors have a 100% prior error. Changes

(!) are reported as (optimized - prior) / prior×100%.

Initial assumed errors Total emissions changes Resulting error reduction

sa,NOx,anth sa,SOx,anth !NH3 !NOx !SOx !RMSE NO
−
3 !RMSE SO

2−
4

30% 10% -25.3% -1.4% -2.5% -42.7% -1.1%

50% 25% -25.8% -2.1% -7.9% -43.0% -3.6%

100% 100% -22.0% -9.6% -5.3% -43.5% -8.6%

Table 3. Precent by which changes to emissions of a given species from particular sectors are more effective

for reducing nonattainment than changes to emissions of that species from all sectors (Eq. (15)).

Emission sector January April July October

SOx surface -11 -14 -11 -12

SOx stack 16 17 13 13

SOx shipping -4 -2 -2 -1

NH3 anthropogenic -10 -11 -16 -23

NH3 natural 9 11 12 14

NH3 biomass burning -18 -9 -3 0

NH3 biofuel 18 9 8 10

NOx surface -2 -4 0 -6

NOx stack 13 11 26 14

NOx lightning -6 -5 -19 -6

NOx soil -4 -2 -8 -2
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sensitivity of SOx emissions has a value near the nonattainment region that is actually negative.

If removal of sulfate aerosol in the presence of fixed total ammonia and nitric acid concentrations

cause one mole of (NH4)2SO4 (molecular weight = 132) to be replaced by two moles of (NH4)NO3

(molecular weight = 80), then the total PM2.5 concentration would be enhanced by decreases in SOx

emissions. Also, NOx controls can potentially be counterproductive in April (the mechanisms for680

such a feedback is given in Sec. 4.5.3), though the overall magnitude of the latter effect is small.

The existence of such feedbacks have been noted previously (Napelenok et al., 2006; Henze et al.,

2007); here the explicit consequences for air quality attainment are quantified.

So far the influences of emitted species have been considered only for the most influential source

sector. The fully normalized sensitivities, λpi,m
= ∂Ja

∂pi,m

pi,m

Ja
, estimate how changes to emissions685

from sector m in location i will influence the air quality metric. Since the spatial distributions of

emissions in different sectors are not the same, the consequence of changing all emissions for a given

species by a certain amount will be different from sector to sector. Naturally, a significant component

of this sector-to-sector difference is owing to the difference in magnitudes of the emissions from

different sectors. To distinguish between these effects, the following statistic is calculated,690

χm =

(

|
∑

i λpi,m
|

|
∑

i,m λpi,m
|
−

∑

i pi,m
∑

i,m pi,m

)

× 100%, (15)

where here i is the spatial index andm is the index of a specific source sector. For the summations,

the range of the spatial index i is the physical range over which emissions from sector m have at

least a 0.001% effect on J (i.e., |λpi,m
| > 10−5). The sum overm is for all the source sectors for

a given chemical species, listed in the rows of Table 1. The values for χm are presented in Table695

3. Overall, χm indicates the net relative importance of an emission from a particular sector relative

to the magnitude of the emission from that sector. For example, in July, stack NOx emissions are

23% of the total NOx emissions from all sources, and the sensitivity with respect to stack NOx

emissions is 43% of the sensitivity with respect to NOx emissions from all sources. From Eq. (15),

χNOx,stack = 26%, which means a change to emissions of NOx from industrial sources is 26%more700

effective in reducing nonattainment than in reducing the total amount of NOx emitted. Therefore,

abatement strategies targeting NOx from stack emissions are estimated to be much more effective

than strategies that target NOx emissions as a whole. Such findings are generally robust over the

course of the year, as the signs of the χm are consistent from month to month. Overall, emissions

of SOx and NOx from industrial stacks are much more critical than emissions from the transport705

sector. Emissions of NH3 from natural and biofuel sources are more important than anthropogenic

NH3 emissions. Emissions such as NOx from lightning and soil, SOx from shipping and NH3

from biomass burning are not as influential for nonattainment owing to their spatial and temporal

distributions.

While the present work considers only the contribution of inorganic species to PM2.5, it is impor-710

tant to keep in mind the role of primary and secondary organic aerosol in determining total levels of

21

m = sector 
i   = location 
p  = emission 
   = sensitivity 



AQ Attainment: long-range influences 
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More than 25% of the influence of SOx emissions  on U.S. inorganic 
PM2.5 comes from emissions outside the U.S.  



AQ Attainment: long-range influences 

Table shows the total influence of each sector (Total) and 
the percent of that total from each spatial domain on J. 
Sectors with largest influence are highlighted.     

Table 4. Precent by which changes to emissions from particular source sectors are more effective for reducing

nonattainment than changes to the emissions in general. See Eq. (15).

Emission sector Total sensitivity Percent from each region

U.S. Canada Mexico ROW

SOx surface 11.1 57.8 8.2 23.9 10.1

SOx stack 30.1 75.1 16.7 3.4 4.7

SOx shipping 2.0 67.9 6.9 6.4 19. 9

SOx biomass burning 0.2 16.2 1.1 77.3 5.4

SOx bio fuel 0.03 2.9 25.4 36.1 35.6

NH3 anthropogenic 19.6 90.0 6.0 2.3 1.7

NH3 natural 9.2 89.4 8.4 0.1 1.3

NH3 biomass burning 0.6 60.1 2.3 33.3 3.1

NH3 biofuel 3.48 95.4 3.9 0.4 0.2

NOx surface 6.7 84.4 5.3 8.3 2.0

NOx stack 2.7 97.7 1.1 0.4 0.8

NOx lightning 0.1 68.3 1.1 24.3 6.2

NOx soil 0.7 65.3 4.1 28.8 1.7
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Final comments on adjoint sensitivities 

• Computational efficiency  

• No perturbation to forward model 
 - sensitivities around current model state 
 - relevant for policy (+/- 10-30% ∆emission) 

• Models can be first conditioned to observations using 4D-Var 

• Estimates of emissions influence side-by-side with estimates 
influence of other parameters  

Advantages 

Disadvantages 
 • sensitivities ≠ source attribution 



Towards actual decision making activities  

Consider additional observational constraints 
 - combine remote sensing with surface observations 
 - gas- and aerosol-phase 

Move to higher resolution 
 - Coupling of global and regional adjoint models  
 - GEOS-Chem adjoint with CMAQ adjoint (Hakami et al., 2007) 

Make attainment studies more relevant 
 - Use actual NAAQS, model changes relative to obs (SMAT) 
 - optimize emissions such that NAAQS are met 

Consider additional metrics 
 - health based 
 - co-benefits (i.e., O3 and PM2.5 simultaneously)  



Testing the Adjoint: single processes, 1 week 

(thermo only) 



Testing the Adjoint: single processes, 1 week 

(thermo only) 

(chem only) 



AQ Attainment 

Consider a representative metric of PM2.5 air quality,   

“Susceptibility”           = semi normalized sensitivities 

“Control effectiveness” = fully normalized sensitivities 
∂J

∂E
× E

J
× 100% ≈ #J [%]

#E/E

Calculate the sensitivity of this metric w.r.t. PM2.5 
precursor emissions,   . E



AQ Attainment: April 
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Regularization Parameter 

Error [%] 

Total 

assim. 

prediction 



Discrete Adjoints (general) 

Consider a discrete governing equation that propagates the vector of concentrations from  
time step n to step n+1:   

2. Define the adjoint variable:  

3. Expand the RHS of (2) using the chain rule  

1. Define the local Jacobians: 4. Solve iteratively (& backwards) 

DO n = N, 1, -1 

END DO 

initialize: 

result: 

Parameters (emissions)  

Concentrations of species k 

∂cn+1

∂cn
=

∂Fn(cn)
∂cn

≡ Fn
c ,

∂cn+1

∂p
=

∂Fn(cn)
∂p

≡ Fn
p

cn+1 = Fn(cn,p), cn = [cn
1 , . . . , cn

k , . . . , cn
K ]T

p = [p1, . . . , pm, . . . , pM ]

is a model response; we are interested in sensitivity w.r.t. parameters,        . ∇pJJ(c,p) =
N∑

n=1

gn(cn)

λn
c =

N∑

n′=n+1




n′−1∏

n′′=n

(Fn′′

c )T



 ∂gn′

∂cn′ +
∂gn

∂cn

λn
c = ∇cnJ =

N∑

n′=n

∂gn′

∂cn

λN
c =

∂gN

∂cN

λN
c = (Fn−1

c )T λn
c +

∂gn−1

∂cn−1

iterate: 

λ0
c = ∇c0J

λp = ∇pJ =
N∑

n=1

(Fn−1
p )T λn

c



AQ Attainment 
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GEOS-Chem vs IMPROVE 

(a) Stack emissions of SOx (b) Surface emissions of NOx

-0.10 -0.05 0.05 0.10 [%]0

(c) Initial conditions (933 hPa): SO42- (d) Initial conditions (933 hPa): NH4+



Aerosols and Radiative Forcing 

“It would be useful to identify the RF contribution 
attributable to different source categories (Section 
2.9.3 investigates this). 

 However, few models have separated out the RF 
from specific emission source categories.” 

Forster et al., 2007: Changes in Atmospheric Constituents and in Radiative Forcing. 
In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group 
I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

IPCC 4, WGI, Ch 2, p180: 



Aerosols and Radiative Forcing 

Calculated efficiently (3 x tfwd) with an adjoint model 

Sensitivities from every sector and every region: 



GEOS-Chem direct RF 

Approximations made: 
Macro 
  - Clear sky 
  - Only direct effects 
  - Only SO4-NO3-NH4-H2O  and BC aerosol  
Micro 
  - Refractive index of SO4-NO3-NH4-H2O is that of SO4. 
  - Assumed dry size 
  - External mixture 

Timescale 
  - 1 week in July 

Implement radiative transfer, LIDORT, with 
derivative capabilities (Spurr, 2002).  



Clear sky aerosol direct radiative forcing 

Stack SOx emissions Transportation SOx emissions 

Sensitivities with respect to different emissions sectors:  

sensitivities = 



Clear sky aerosol direct radiative forcing 

emissions sensitivities 

Consider transport sector SOx 

[molec / cm2 / s ]  

Location matters 



Clear sky aerosol direct radiative forcing 

Fossil Fuel BC 

Transportation NOx 

Sensitivities with respect to different species & sectors:  
Shipping SOx 

Biomass Burning BC 



Future work 

• Organic carbon 

• Refractive index / mixing state  

• Clouds 

• Additional days / seasons 

• Indirect effects 

• Use GISS climatology, future emissions scenarios 

Additional factors to consider 



Final comments on adjoint sensitivities 

• Computational efficiency  

• No perturbation to forward model 
 - sensitivities around current model state 
 - relevant for policy (+/- 10-30% ∆emission) 

• Models can be first conditioned to observations using 4D-Var 

• Estimates of emissions influence side-by-side with estimates 
influence of other parameters (ex: Ddry) 

Advantages 

Disadvantages 
 • sensitivities ≠ source attribution 



Inverse Model 

Parameter Estimate 

Predictions 
Adjoint Forcing 

Gradients 
(sensitivities) 

Optimization 

Forward Model  Adjoint Model 

Observations 

Improved  
Estimate 

- 

t0 tf tf t0 

Inverse Modeling Tests: Psuedo Observations 

<‐‐ generated with GEOS‐Chem using  
a known set of model parameters.  



Inverse Model 
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Inverse Model 

Parameter Estimate 

Predictions 
Adjoint Forcing 

Gradients 
(sensitivities) 

Optimization 

Forward Model  Adjoint Model 

Observations 

Improved  
Estimate 

- 

t0 tf tf t0 

Inverse Modeling using Adjoint Model 



Optimization 

Forward Model  Adjoint Model 

t0 tf tf t0 

scale the parameters 

Cost function J 

new scaling factors Inverse Model 

Inverse Modeling using Adjoint Model 



Consider reac&on rate equa&ons: 

Reac&on rate parameters 

Discrete Adjoint of Chemical Reac&on Kine&cs  



Numerical model (Rosenbrock solver): 

Discrete Adjoint of Chemical Reac&on Kine&cs  

Lots of numerical tricks 
for handling s5ff ODEs  



Adjoint of numerical model with respect to … 

… concentra&ons (Sandu et al., 2002): 

… reac&on rate parameters (Henze et al., 2007): 

(Jacobian)  (Hessi
an) 

Discrete Adjoint of Chemical Reac&on Kine&cs  
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KPP automatically generates simulation and  
direct/adjoint sensitivity code for chemistry 

#INCLUDE atoms 

#DEFVAR 
O  =   O;  O1D  =  O;  
O3   =   O + O + O;  
NO  =   N + O;  
NO2  =  N + O + O;  

#DEFFIX 
O2   =   O + O;  M  =   ignore;  

#EQUATIONS  { Small Stratospheric }  
O2  + hv = 2O               :   2.6E-10*S;  
O    + O2 = O3              :   8.0E-17;  
O3  + hv = O   + O2      :   6.1E-04*S;  
O    + O3 = 2O2            :   1.5E-15;  
O3  + hv = O1D + O2    :   1.0E-03*S;    
O1D  + M  = O   + M     :   7.1E-11;  
O1D  + O3 = 2O2          :   1.2E-10;  
NO    + O3 = NO2 + O2 :   6.0E-15;  
NO2  + O  = NO  + O2   :   1.0E-11;  
NO2  + hv = NO  + O    :   1.2E-02*S;  

SUBROUTINE FunVar ( V,  F, RCT, DV ) 
     INCLUDE 'small.h' 
      REAL*8 V(NVAR), F(NFIX) 
      REAL*8 RCT(NREACT), DV(NVAR) 
C A - rate for each equation                                        
      REAL*8 A(NREACT) 
C Computation of equation rates                                     
      A(1) = RCT(1)*F(2) 
      A(2) = RCT(2)*V(2)*F(2) 
      A(3) = RCT(3)*V(3) 
      A(4) = RCT(4)*V(2)*V(3) 
      A(5) = RCT(5)*V(3) 
      A(6) = RCT(6)*V(1)*F(1) 
      A(7) = RCT(7)*V(1)*V(3) 
      A(8) = RCT(8)*V(3)*V(4) 
      A(9) = RCT(9)*V(2)*V(5) 
      A(10) = RCT(10)*V(5) 
C Aggregate function                                                
      DV(1) = A(5)-A(6)-A(7) 
      DV(2) = 2*A(1)-A(2)+A(3)-A(4)+A(6)-&A(9)+A(10) 
      DV(3) = A(2)-A(3)-A(4)-A(5)-A(7)-A(8) 
      DV(4) = -A(8)+A(9)+A(10) 
      DV(5) = A(8)-A(9)-A(10) 
      END 

 K 
 P 
 P 

[Damian et.al., 1996; Sandu et.al., 2002] 

Chemical mechanism Simulation code 



KPP generated code is fast:  compare to widely used GEAR solver 
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87 species, 307 reactions:  Note the sparse structure --> Fast! 

Box model test with KPP 



Box Model Test:  Discrete sensitivity with respect to 
p1 



Sensitivity of NOx on rate constants in chemical mechanism 
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Sensitivity of NOx on rate constants in chemical mechanism 

k NOx, emis 

k N2O5, het 

k NO3, het 

k NO2, het 

Simulation Day 

[molecule cm-3] 

noon  noon  noon 



GEOS-Chem vs Observations 

Model description: Park et al., (2004) 
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Liao et al., (2007) 
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Nitrate dependence on NOx 
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Nitrate dependence on NOx  
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