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CMAQ compared with SCIAMACHY': worst in rural areas.
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Figure 2: Vertical proflles of background and polluted conditions from Singh 2007.
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Which model processes lead to under-prediction?

@ Potential sources of error:
e chemistry, photolysis, aerosols, advection, convection, diffusion, wet
deposition, dry deposition, emissions, the stratosphere, the ocean, ...

@ Modeled chemistry has been questioned (Olson 2006, Bertram 2007,
Ren 2008)
o typically: evaluate a model against a chamber study (i.e. a controlled
timeseries of measurements)
e problem: does anyone have a chamber at 236K and 0.298 atm?
o What to do?

@ We need a timeseries of observations
@ We need a timeseries of model results
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Bertram results can derive air parcel ages

Deep convection sends a plug of surface air to upper troposphere
@ wet scavenging removes HNO; and lightning adds NO,
@ Air parcels are mostly stable for up to 5 days
@ Freshly convected: NO,:HNO; >> 1
@ Aged air parcel: NO,:HNO,; <<'1

Upper troposphere

High NO, / HNO, ratio vort
NO o

ﬁ ) 5 10 15 20
- Days after convective injection
o
= 48, Addition of lightning NO_
3
2 -5._':. Wet scavenging of HNO,

Boundary layer

Figure 3: Deep convection from Bertram et al. Science 2007
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Observation timeseries: classified by “derived age”
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Figure 4: NO,:HNOj is used to categorize days since convection. O3 shows a
monotonic increase with time. CO shows a monotonic decrease with time. NO,
shows a gradual increase with time.
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Figure 4: NO,:HNOj is used to categorize days since convection. O3 shows a
monotonic increase with time. CO shows a monotonic decrease with time. NO,

shows a gradual increase with time.
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Simulating aging of freshly convected air parcels

@ Box modeling air parcels using LEEDS DSMACC box model
@ Physical and initial conditions from “freshly convected” observations

Table 1: Overview of 7 chemical mechanisms in this study.

Model (abbreviation) f Rxns | § Spcs
Carbon Bond ‘05 (CBO05) 176 62
State Air Pollution Research Center '99 | 222 77
(SAPRC99)

SAPRC '07 (SAPRCO7) <700 | 153

Model for OZone And Related chemical | 290 88
Tracers “Standard” (MZ4)

GEOS-Chem “full” (GEOS) 290 38
Regional Atmospheric Chemistry Mech v.2 | 341 117
(RACM2)

Master Chemical Mechanism ( ) >4500 | >1700
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Chemical Model Evaluation
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Figure 5: Model predictions compared to observations with the Mann-Whitney U
test. Model medians are displayed circles that are filled when consistent with
observations (p < 0.0001).
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Models over-predict NO,/NO,, PAN, and HNO,
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Figure 6: Nitrogen species 24 hours since convection: observed (back) and modeled
(front). Filled circles are consistent with observations (p < 0.0001).
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Conclusions: Model performance

@ Semi-explicit, regional, and global models all

under-predict NO,:HNO4

under-prediction NO,

over-predict NO,, esp. CH;C(O)ONO, and HNO4
over-prediction NO,/NO,

@ All problems point to too many radical reactions
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PAN Sensitivity Studies
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Figure 7: GEOS-Chem tested with old acetone quantum yield, with 2xCQO, and with
constrained acetaldehyde. Model medians are displayed circles that are filled when
consistent with observations (p < 0.0001).
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Models over-predict OH and HO,

[CBO5|  [SAPRC99] [SAPRCO7]  [GEOS|
0.8 === T - T 18
0.7k ] 1 ’”” e B aE 16
T o] 1 i
0.6 C | ] 14
e
5 =l '
Q. 0.5 f jt( o
i To ARKe] -;' T 110 ~
0.4 Lol? I ®)
L 4 I
T i ole
03 — TTT q Lm 16
02r | T [ i 1 1] 4
01— L == 1 2
15-30 30-45 45-60 60-75 15-30 30-45 4560 60-75

L | | o old

0 12 24 48 72 96 120

Figure 8: HOx" by solar zenith angle 24 hours since convection: observed (back)
and modeled (front). Filled circles are consistent with observations (p < 0.0001).
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Potential issues

@ Over-predicting radical source (i.e. photolysis)

@ Over-predicting radical amplification
e CH,O
e OH+ CH,0 — CO + HO,
e HO, + NO — NO, + HO’
e CH;CHO
OH + CH,CHO — CH,C(0)00"
CH,C(0)00" + NO — NO, + CH,00
CH,00" + NO — NO, + CH,O + HO;
HO, + NO — NO, + HO®

@ Over-predicting radical cycling efficiency

e ratio of radical propagating to radical terminating reactions
e propagation (i.e. RO, + NO — NO, + RO")
o termination (i.e. OH + NO, — HNO;)
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Radicals sources in the first 4 hours

Table 2: Comparison of new radicals (ppt) by chemical mechanism.

Reaction GEOS | CB05
CH,0 — CO +2 - HO, 488 346
0; — O'D; O'D + H,0 — 2 -HO" 215 | 246
HNO, — NO + HO 226 186
H,0, — 2 -HO® 100 | 103
CH;C(0)O0OH — CH;00" + HO 38 59
CH;CHO — CO + HO; + CH;00° 31 37
CH;C(0)CH; — CH;C(0)00" + CH;00° 32 0
HNO, — HO, + NO, 23 13
CH;00H — CH,0 + HO; + HO" 22 23
Total new Radicals 1199 | 1035
CH;00H + HO® — CH,0 + H,0 + HO" 0 26
CH;00H + HO" — HO, + X0, + CH;00°
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Radicals sinks in the first 4 hours

Table 3: Comparison of radical removals (ppt) by chemical mechanism.

Reaction GEOS | CB05
HO"+ HO, — H,0 + 0, 363 266
HO"+ NO — HNO, 234 192
NO, + HO;, — HNO, 176 154
HO" + NO, — HNO, 131 104
HO, + HO, — H,0, 92 88
HO" + HNO, — H,0 + NO, + O, 83 71
CH;00" + HO, — CH;00H + O, 43 29
HO, + CH;C(0)00" — CH;C(O0)O0H 16 9
Total Radical Sink 1219 | 1025
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Conclusions

@ Model performance
models under-predict NO, particularly after 1 day old
over-predict rate of “aging” in the first 24 hours (improves subsequently)
best O3 came from worst HO;
HOx’

o Like other studies HO,, ., =2xHO;

obs

o Unlike other studies HO,, 4o > HO5,,.

@ Best practices
o check model photolysis for pressure/temperature sensitivity
o use detailed photolysis in the upper troposphere
o use Blitz et al. 2004 CH;C(O)CH; quantum yield
@ Next steps
o Investigate HO,, 4| improvement compared to other studies
o Attribute radical production to initial species (not immediate precursor)
o Assess uncertainty in major radical source species
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