Developing the adjoint of ISORROPIA: *Equipping CMAQ-ADJ for Comprehensive Treatment of Inorganic Aerosol* Shannon Capps, Armistead Russell, and Athanasios Nenes *Georgia Institute of Technology*

October 19, 2009

Overview

How would a comprehensive inorganic aerosol adjoint augment the functionality of CMAQ-ADJ?

What is the process of adjoint development?

In what sensitivity regime are Atlanta aerosol?

Regional influence of inorganic aerosols

- Aesthetic
 - Hinder visibility
 - Acid rain damage
- Ecological
 - Nitrification of ecosystems (Galloway et al., 2004)

- Epidemiological
 - Potential of inorganic fine particulate matter (PM_{2.5}) to degrade health (Schlesinger, 2007)

Abundance of Inorganic Aerosol

Inorganic Aerosol Mass Fraction

Total Aerosol Loading

Average of CMAQ v4.6 hourly data from June 28 - July 7, 2007

Importance of sensitivity calculations: Comprehensive understanding of PM formation

"Forward" Sensitivities					
$\partial(\mathbf{Concentrations}_i)$					
$\partial(Emissions_{NO_x})$					
2.5	∆PM _{2.5} Tennessee	∆ <i>PM</i> _{2.5}	Δ <i>PM</i> _{2.5}	Δ <i>PM</i> _{2.5}	$\Delta PM_{_{2.5}}$ orth Carolina
∆ <i>PM</i> _{2.5}	∆ <i>PM</i> _{2.5}		Δ <i>PM</i> _{2.5}	$\Delta PM_{2.5}$	$\Delta PM_{2.5}$
∆ <i>PM</i> _{2.5}	ΔPM 2.5 Nabama	ΔE_{so_x}	APM _{2.5} Georgia	∆ <i>PM</i> _{2.5}	△PM _{2.5}
∆ <i>PM</i> _{2.5}	$\Delta PM_{2.5}$	$\Delta PM_{2.5}$	Δ <i>ΡΜ</i> _{2.5}	Δ <i>PM</i> _{2.5}	$\Delta PM_{_{2.5}}$
Δ <i>ΡΜ</i> _{2.5}	[∠] ∆PM _{2.5}		Δ <i>ΡΜ</i> _{2.5}	∆ <i>PM</i> _{2.5}	$\Delta PM_{_{2.5}}$
∆ <i>PM</i> _{2.5}	$\Delta PM_{_{2.5}}$	$\Delta PM_{_{2.5}}$	$\Delta PM_{2.5}$	APM Florida2.5	$\Delta PM_{_{2.5}}$

Importance of sensitivity calculations: Comprehensive understanding of PM formation

Importance of sensitivity calculations: Comprehensive understanding of PM formation

Inorganic aerosol thermodynamic equilibrium

ISORROPIA (Nenes et al., 1998) ISORROPIA II (Fountoukis and Nenes, 2007)

Treatment of deliquesced aerosol only in CMAQ

Georgialnstitute of Technology

ISORROPIA (Nenes et al., 1998) ISORROPIA II (Fountoukis and Nenes, 2007)

Transforming ISORROPIA into an adjoint

Implementation of automatic differentiation

Forward execution of ISORROPIA

Augmentation of ISORROPIA by TAPENADE

Verification of adjoint performance

Method

• Finite difference sensitivity

$$\frac{\Delta[NO_{3,(aq)}^{-}]}{\Delta[\text{Total NH}_{3}]} = \frac{[NO_{3,(aq)}^{-}]_{(\text{Total NH}_{3} + \frac{1}{2}h)} - [NO_{3,(aq)}^{-}]_{(\text{Total NH}_{3} - \frac{1}{2}h)}}{(\text{Total NH}_{3} + \frac{1}{2}h) - (\text{Total NH}_{3} - \frac{1}{2}h)}$$

Adjoint-produced sensitivity

$$\frac{\partial([NO_{3,(aq)}^{-}])}{\partial([Total NH_{3}])} = \left(\frac{\partial F}{\partial x}\right)^{T} \left(x, \lambda_{[NO_{3,(aq)}^{-}]}\right)$$

Range

- Ammonium-sulfate-nitrate systems
- 5 95% relative humidity

Finite difference sensitivities (mol/mol) (Capps et al., manuscript in preparation)

Elucidation of the physical system: Sensitivity of ammonium ion (NH₄+) to total sulfate

Elucidation of the physical system: Sensitivity of ammonium ion (NH₄⁺) to total sulfate

Elucidation of the physical system: Sensitivity of ammonium ion (NH₄⁺) to total sulfate

(Capps, et al., *manuscript in preparation*)

Elucidation of the physical system: Sensitivity of ammonium ion (NH₄+) to total sulfate

Elucidation of the physical system: Sensitivity of ammonium ion (NH₄+) to total sulfate

Elucidation of the physical system: Sensitivity of ammonium ion (NH₄+) to total sulfate

Regional sensitivity exploration: Characterization from ANARChE in Atlanta

GeorgiaInstitute of **Tech**nology

Sensitivity exploration for Atlanta: Ammonium ion to total sulfate adjoint-derived sensitivity

Sensitivity exploration for Atlanta: Ammonium ion to total sulfate adjoint-derived sensitivity

GeorgiaInstitute of Technology

Sensitivity exploration for Atlanta: Ammonium ion to total sulfate adjoint-derived sensitivity

On-going work & Applicability

- Completion of the adjoint of ISORROPIA
 - Treatment of Na and Cl
 - Including crustal species of ISORROPIA II
- Integration into CMAQ-ADJ

- Augmented capability for regional model data assimilation
 - Inclusion of inorganic aerosol and aerosol precursors
- Efficient source-apportionment for selected receptors
 - Potentially beneficial for epidemiological studies
 - Useful for regulatory applications

Acknowledgements

- Advisors: Athanasios Nenes and Armistead Russell
- ANARChE Data: Greg Huey, Rodney Weber, Amy Sullivan, Di Tian
- Funding Sources
 - NSF Graduate Research Fellowship
 - Eastman Chemical Summer Graduate Fellowship
 - Conoco-Phillips, Model Development Support
 - Georgia Tech Institute Fellowship

Supplemental Slides

Solution algorithm of ISORROPIA

Verification of adjoint performance

(mol/mol)

(Capps, et al., *manuscript in preparation*)