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1 INTRODUCTION

The detection of boundary layer ammonia by the
NASA TES instrument provides unprecedented op-
portunity for reducing persistent uncertainties in our
understanding of the distribution and impacts of at-
mospheric ammonia. Ammonia (NH3) affects air
quality and climate through its role in the mass,
composition and physical properties of tropospheric
aerosol. In order to maximize the potential of TES
observations to constrain model estimates of these
important processes, we will take advantage of re-
cently developed data assimilation tools for combin-
ing remote sensing constraints with in situ measure-
ments. The goal is to improve both spatial distribu-
tions and seasonal estimates of sources and fates of
NHx in air quality models, quantifying how this al-
ters particle compositions and sensitivities to chang-
ing emissions.

Considerable effort will be made to first character-
ize the approach using model generated (“pseudo”)
observations, exploring the influence of prior as-
sumptions and covariances. The inverse modeling
results will be evaluated through comparison of sub-
sequent model estimated NH3 and PM2.5 concentra-
tions and with additional observations.

2 INVERSE & ADJOINTS

Sensitivity analysis of air quality models is an impor-
tant aspect of analyzing model estimates and recon-
ciling differences with observed quantities. A chem-
ical transport model can be viewed as a sequence of
discrete operators, Fn, that advances a concentra-
tion vector from time step n to step n+1,

cn+1 = Fn(cn,σ), (1)

where cn is the vector of all K tracer con-
centrations, cn=[cn1 , . . ., c

n
k , . . ., c

n
K ]T at time step
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n=0,. . . ,N, and σ is a vector of M parameters,
σ = [σ1, . . . , σm, . . . , σM ]T . The Jacobian matrices
of the model operator around any given time step
can be written as

∂cn+1

∂cn
=
∂Fn(cn)
∂cn

≡ Fnc ,
∂cn+1

∂σ
=
∂Fn(cn)
∂σ

≡ Fnσ.

(2)
An adjoint model is used to calculate the sensi-

tivity of a single scalar model response function, J ,
with respect to all model parameters, σ. The re-
sponse function includes one set of terms, Jn(cn),
that may depend upon only concentrations of par-
ticular species or in particular locations, and may
include a second term that explicitly depends upon
the parameters, Jσ(σ). As specification of the exact
form of these terms is not necessary for derivation of
the adjoint model, the response is written in general
form,

J =
N∑
n=0

Jn(cn) + Jσ(σ). (3)

The adjoint sensitivity variables are defined as λnc =
∇cnJ and λσ = ∇σJ , where the subscripts c and σ
indicate sensitivity with respect to c and σ, respec-
tively. Initializing

λNc =
∂JN

∂cN
and λσ =

∂Jσ
∂σ

,

adjoint sensitivities are found by evaluating the fol-
lowing update formulas iteratively from n=N, . . ., 1,

λn−1
c = (Fn−1

c )Tλnc +
∂Jn−1

∂cn−1
, (4)

λσ = (Fn−1
σ )Tλnc + λσ, (5)

at the conclusion of which λ0
c is the sensitivity

of the cost function with respect to initial condi-
tions, ∇c0J , and λσ is the desired sensitivity of the
cost function with respect to the model parameters,
∇σJ . The adjoint model calculates the sensitivity
of the scalar model response with respect to all M
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elements of the model parameter vector in ∼3 times
the length of a forward model run, which is nearly M
times more efficient than finite difference or decou-
pled direct methods. Given M can be O(105) for a
3-D air quality model, the savings are considerable.

Data assimilation techniques provide a framework
for combining observations and models to form an
optimal estimate of the state of a system, which
in this case is the chemical makeup of the tropo-
sphere. To start with, a range of models is typically
constructed using control variables, σ, to adjust el-
ements of the vector of model parameters, p, via
application as scaling factors, p = pae

σ, where pa is
the prior parameter estimate. The approach we con-
sider iteratively employs the adjoint of an air qual-
ity model in a method referred to as 4D-Var (Sandu
et al., 2005), used here for inverse modeling of emis-
sions. The advantage of this method is that numer-
ous (O(105)) model parameters can be optimized si-
multaneously while still retaining the constraints of
the full forward model physics and chemistry. This
approach to inverse modeling seeks σ that minimizes
the cost function, J , given by

J =
1
2

∑
c∈Ω

(Hc− cobs)TS−1
obs(Hc− cobs)

+
1
2

(σ − σa)TS−1
a (σ − σa) (6)

where H is the observation operator, σa is the prior
estimate of the control variables, Sa and Sobs are
error covariance estimates of the control variables
and observations, respectively, and Ω is the domain
over which observations, cobs, and model predictions
are available. Overall, the cost function is a spe-
cific model response, the minimum value of which
balances the objectives of improving model perfor-
mance while ensuring the model itself remains within
a reasonable range (as dictated by S−1

a ) of the initial
model. Gradients of the cost function with respect to
the parameter scaling factors calculated with the ad-
joint model, ∇σJ , are supplied to an optimization
routine (the quasi-Newton L-BFGS-B optimization
routine (Byrd et al., 1995; Zhu et al., 1994)), and the
minimum of the cost function is sought iteratively.
At each iteration, improved estimates of the model
parameters are implemented and the forward model
solution is recalculated.

3 MODELING

GEOS-Chem GEOS-Chem is a chemical trans-
port model driven using assimilated meteorology
from the Goddard Earth Observing System (GEOS)
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Figure 2: Validation of adjoint model sensitivities via comparison to finite difference (FD) results
for week-long simulations. Solid lines are 1:1, dashed are regressions with given r2 and slope m. (a)
Global tests of the 1-D adjoint model: sensitivities of nitrate aerosol with respect to NH3 emissions.
(b) Spot tests of the full adjoint model: change in direct aerosol radiative forcing from perturbations
(positive and negative) to SO2 emissions in eight different locations.

databases (CAC, BRAVO, NEI99) will be used for emissions over Canada, Mexico and the
U.S., respectively.

GEOS-Chem adjoint model The adjoint of the GEOS-Chem model was developed
specifically for inverse modeling of precursors of inorganic PM2.5 with explicit inclusion of gas-
phase chemistry, heterogeneous chemistry, and treatment of the thermodynamic couplings
of the sulfate - ammonium - nitrate - water aerosol system (Henze et al., 2007). As the only
adjoint model to explicitly represent this system, it is uniquely capable of exploiting both
gaseous and particulate measurements in novel ways. Since its initial development, several
advances have been made in the capabilities of the GEOS-Chem adjoint. An up-to-date
list of features is available at the GEOS-Chem adjoint wiki.1 In addition to the previously
mentioned work of Henze et al. (2008), recent applications of the GEOS-Chem adjoint include
inverse modeling of CO emissions in Asia (Kopacz et al., 2009) and calculation of long-range
influences on observed O3 concentrations in the western United States.2

Verification of the adjoint model is an important yet challenging task. The most common

1http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem Adjoint
2Zhang, L., D. J. Jacob, M. Kopacz, D. K. Henze, and D. A. Jaffe, Intercontinental source attribution of

ozone pollution at western U.S. sites using an adjoint method, submitted to Geophys. Res. Let.
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Figure 2: Validation of adjoint model sensitivities via comparison to finite difference (FD) results
for week-long simulations. Solid lines are 1:1, dashed are regressions with given r2 and slope m. ??
Global tests of the 1-D adjoint model: sensitivities of nitrate aerosol with respect to NH3 emissions.
?? Spot tests of the full adjoint model: change in direct aerosol radiative forcing from perturbations
(positive and negative) to SO2 emissions in eight different locations.

aboard the NASA Aura satellite, launched July 15, 2004 (?). TES global survey observations
repeat with a 16-day cycle and have a nadir footprint of 5 km × 8 km. NH3 retrievals are
scheduled to become implemented in the TES operational retrieval algorithm as a standard
product in 2010. At this time the TES retrievals will be processed both forward in time
and reprocessed from the implementation period back to the start of the TES observations
in July 2004. The TES science team also schedules and accepts proposals for Special Ob-
servations (SO). Three kinds of SO have been used: the Step and Stare mode with nadir
observations separated ∼45 km along a portion of an Aura orbit, the Transect mode with
nadir/off-nadir (nadir-angle < 4) observations such that 40 nadir footprints are contiguous
covering ∼480 km; and the Stare mode with 32 measurement scans at a fixed location.

The TES retrievals use an optimal estimation method to retrieve ammonia, which has the
advantage of directly providing the averaging kernel (vertical sensitivity of the observations)
and inverse error covariance matrix, S−1

obs, needed for the model inversions. The averaging
kernel, A, describes the sensitivity of the retrieval to the true atmospheric state. [Confirm
with Ming and Mark about the accuracy of the next few sentences] The sum of each row
of A can be used as a metric to estimate the fraction of information in the retrieval that
comes from the measurement rather than the a priori (?) at the corresponding altitude,
providing the retrieval is relatively linear. An example of the sum of the rows for the TES
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Figure 1: Validation of adjoint model sensitivities via
comparison to finite difference (FD) results for week-long
simulations. Solid lines are 1:1, dashed are regressions
with given r2 and slope m. (a) Global tests of the 1-D
adjoint model: sensitivities of nitrate aerosol with re-
spect to NH3 emissions. (b) Spot tests of the full adjoint
model: change in direct aerosol radiative forcing from
perturbations (positive and negative) to SO2 emissions
in eight different locations.

of the NASA Global Modeling and Assimilation Of-
fice (Bey et al., 2001). GEOS-Chem includes an
online secondary inorganic aerosol simulation intro-
duced and described in full by Park et al. (2004).
Model estimates of inorganic PM2.5 have been com-
pared to surface measurements (Park et al., 2004,
2006; Liao et al., 2007; Henze et al., 2009; Pye et al.,
2009) and measurements from aircraft campaigns
(Heald et al., 2005, 2006); NH3 emissions are fre-
quently indicated to be a likely cause of discrepan-
cies.

GEOS-Chem adjoint model The adjoint of
the GEOS-Chem model was developed specifically
for inverse modeling of precursors of inorganic PM2.5

with explicit inclusion of gas-phase chemistry, het-
erogeneous chemistry, and treatment of the ther-
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modynamic couplings of the sulfate - ammonium -
nitrate - water aerosol system (Henze et al., 2007,
2009). As the only adjoint model to explicitly repre-
sent this system, it is uniquely capable of exploiting
speciated measurement of both gaseous and partic-
ulate components in novel ways. The accuracy of
the adjoint model calculations are verified through
extensive comparisons of adjoint to finite difference
sensitivities, as shown in Fig. 1. In order to max-
imize points of comparison between these two ap-
proaches, we consider both ensembles of 1-D models
(i.e., no horizontal transport) as well as spot tests of
the full 3-D adjoint model (testing the full adjoint
model for each parameter is not feasible, as it would
require M + 1 forward model calculations).

4 OBSERVATIONS

Remotely sensed NH3 observations from TES
The high spectral resolution and good signal-to-
noise ratio of the TES instrument (Shephard et al.,
2008) have enabled the first detection of tropo-
spheric ammonia from space, recently demonstrated
over Southern California and China (Beer et al.,
2008). TES is an infrared Fourier transform spec-
trometer with spectral resolution of 0.06 cm−1

aboard the NASA Aura satellite, launched July 15,
2004 (Schoeberl et al., 2006). TES global survey
observations repeat with a 16-day cycle and have a
nadir footprint of 5 km × 8 km; for example, that
is about ∼2000 scenes a month over North America
after cloud screening (optical depths < 1.0) and ap-
plying the TES retrieval quality control flags. NH3

retrievals are scheduled to become implemented in
the TES operational retrieval algorithm as a stan-
dard product in 2010. At this time the TES re-
trievals will be both processed forward in time and
reprocessed from the implementation period back to
the start of the TES observations in July 2004. The
TES science team also schedules and accepts propos-
als for additional high density measurements (Spe-
cial Observations), such as the Transect mode with
40 continuous observations of 12 km footprints cov-
ering ∼480 km.

The TES retrievals use an optimal estimation
method, which has the advantage of directly pro-
viding the averaging kernel, A, and inverse error co-
variance matrix, S−1

obs, needed for subsequent inverse
modeling. The averaging kernel describes the sensi-
tivity of the retrieval to the true atmospheric state.
The sum of each row of A can be used as a metric to
estimate the fraction of information in the retrieval
that comes from the measurement rather than the

TES: remote sensing of NH3 
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Figure 1: Location of TES NH3 observations during the time period of July 4-19, 2005.
Footprints shown for only a select region between 110◦ to 90◦ E and 30◦ to 45◦ N.

[?], STN (http://www.epa.gov/
air/data/aqsdb.html), and NADP (http://nadp.sws.uiuc.edu). These report speciated mea-
surements of PM2.5 (sulfate, ammonium and nitrate) at several hundred locations within the
U.S. Coincident measurements of gas-phase NH3 available through LADCO (http://www.ladco.org)
will also be used.

2.2.5 Research steps

1. Inverse modeling tests using simulated TES observations of NH3 over North America

2. Inverse modeling using actual TES NH3 observations as well as speciated surface mea-
surements of inorganic PM2.5 for the years XXXX and XXXX

3. Evaluation of robustness and uncertainty in inverse modeling solution.

4. Adjoint sensitivity analysis around the observationally constrained state.

2.3 Expected results and benefits

2.3.1 Inverse modeling

The anticipated outcome of the inverse modeling is improvement in the model representation
of NH3 and, hence, the inorganic fraction of PM2.5. To demonstrate, a “twin experiment”
was designed to test the existing model capabilities. NH3 fields were generated using the
GEOS-Chem model. This fields was taken to be the “truth” by the TES NH3 team, who then
generated a set of pseudo TES observations for the period July x-y. The inverse modeling
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Figure 3: (a) Location of TES NH3 observations during July 4-19, 2005. Footprints shown for
only a select region between 110◦ to 90◦ E and 30◦ to 45◦ N. (b) TES instrumental sensitivity (sum
of the rows of the averaging kernel) to NH3, demonstrating boundary layer detection capabilities
(figure from Beer et al., 2008).Retrieval tests: simulated NH3 

Up next: product validation and emissions inverse tests 

Figure 2: An inverse modeling study of aerosol precursor emissions based on observations of
sulfate and nitrate [Henze et al., 2008] resulted in scaling factors (the log of the ratio of the
optimized emissions to the prior emissions) for (a) anthropogenic NH3 and (b) surface NOx

emissions. The targeted level of spatial detail for our proposal is shown in column (c) the
present baseline inventory of NH3 in CMAQ.

these preliminary results do provide an upper limit to the amount of information we can
expect to get from the TES NH3 measurements. Clearly we should be able to resolve
discrepancies on the order of a uniform 100% error. Fig Y shows the results when the
inverse modeling was initiated with an initial guess for the NH3 emissions that differed in a
more complex manner from the emissions used to generate the observations. ....

2.3.2 Sensitivity analysis

2.4 Project information
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Figure 4: Recovery of a “true”
profile of NH3 by the TES re-
trieval when starting from a prior
NH3 profile generated from a sim-
ulation with NH3 emissions half
the magnitude of those used to
generate the Truth profile.

and AER with GEOS-Chem simulated fields of NH3 that are used as the starting point
for the retrieval process (Shephard et al., 2008a). Perturbed NH3 model fields are also
generated that differ from the standard fields used as prior constraints for the NH3 retrieval.
TES NH3 observations are then simulated based on radiative transfer calculations from the
perturbed fields and the retrieval algorithm is applied, beginning with unperturbed profiles,
the verifying that the “true” profile can be recovered. Initial tests involved TES coverage
for two weeks in July of 2005 for the locations in the Midwestern U.S. shown in Fig. 3(a).
An example of this process is given in Fig. 4.

Surface measurements We will make use of speciated measurements from monitoring
stations such as STN (http://www.epa.gov/ttnamti1/specgen.html), CASTNet (Baumgard-
ner et al., 2002), and IMPROVE (Malm et al., 2004) to provide observations of sulfate,
nitrate, and ammonium at several hundred locations within the U.S. These measurements
are collected on a one in three or one in six cycle for STN and IMPROVE sites, and on a
weekly basis for CASTNet sites. Following guidelines for using speciated PM2.5 networks
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(b)

Figure 2: (a) TES instrumental sensitivity (sum of the
rows of the averaging kernel) to NH3, demonstrating
boundary layer detection capabilities (figure from Beer
et al., 2008). (b) Recovery of a “true” profile of NH3 by
the TES retrieval when starting from a prior NH3 profile
generated from a simulation with NH3 emissions half the
magnitude of those used to generate the Truth.

a priori (Rodgers, 2000) at the corresponding alti-
tude. An example of the sum of the rows for the
TES NH3 retrieval over Beijing China (Beer et al.,
2008) is provided in Fig. 2(a). The vertical reso-
lution is defined as the full-width-half-maximum of
the row of the averaging kernel. In this example the
vertical resolution is approximately 2 km from near
surface to ∼800 mb (∼2 km) with peak sensitivity
at ∼900 mb (∼1km). Note that the sensitivity of
the TES retrieval does vary from profile-to-profile as
it may be affected by the signal-to-noise ratio (and
therefore by the concentration of NH3), by clouds,
and by the retrieval constraints.

Comparison of model estimates to satellite obser-
vations is done via application of the following for-
mula for the TES observational operator, H,

Hc = ca + A(Mc− ca) (7)

where c is the model estimated NH3 profile, M is a
matrix that maps these values to the retrieval units
and vertical levels, ca is the a priori NH3 profile used
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for the retrieval. By comparing TES NH3 profiles
to mapped model estimates, Hc, rather than the
native model NH3 profile, c, the contribution of error
in ca to the measurement error, Sobs, cancels out
(Rodgers, 2000).

As a test of the contribution of a priori model
estimates of the atmospheric distribution and vari-
ability of NH3 to the satellite retrievals, perturbed
NH3 model fields are also generated that differ from
the standard fields used as prior constraints for the
NH3 retrieval. TES NH3 observations are then sim-
ulated based on radiative transfer calculations from
the perturbed fields and the retrieval algorithm is
applied, beginning with unperturbed profiles, veri-
fying that the “true” profile can be recovered. An
example of this process is given in Fig. 2(b).

Surface measurements We will
make use of speciated measurements
from monitoring stations such as STN
(http://www.epa.gov/ttnamti1/specgen.html),
CASTNet (Baumgardner et al., 2002), and IM-
PROVE (Malm et al., 2004) to provide observations
of sulfate, nitrate, and ammonium at several hun-
dred locations within the U.S. These measurements
are collected on a one in three or one in six cycle for
STN and IMPROVE sites, and on a weekly basis
for CASTNet sites. Following guidelines for using
speciated PM2.5 networks measurements (EPA,
2007; Frank, 2006), we will avoid known issues with
NH+

4 from STN and NO−3 from CASTNet by using
measurements of NH+

4 from CASTNet, NO−3 from
STN, and SO2−

4 and NO−3 from IMPROVE. Wet
deposited NHx will be taken from the National
Atmospheric Deposition Program National Trends
Network (NADP/NTN) collected weekly at ∼200
stations throughout the U.S. Following Gilliland
et al. (2006), a 10% upward correction will be
applied to account for sample degradation.

5 CONSTRAINING US NH3

SOURCES

The first step of this phase of the project will be to
explore the capabilities and limitations of the global
inverse modeling setup in idealized control condi-
tions by designing inverse problems with known solu-
tions. An example is presented for an inverse model-
ing test where pseudo-observations of NH3 from TES
and sulfate and nitrate from IMPROVE were gen-
erated using a model with doubled NH3 emissions.
For these tests, 87 pseudo TES observations were
used from July 14-19, 2005, along roughly a dozen
global survey transects crossing the midwestern U.S.

NH3 emissions scaling factors (σ = ln(E/E0)) after
only four iterations of the inverse model are shown
in Fig. 3(a). These scaling factors were zero at the
first iteration, but were 0.69 (=ln(2)) when gener-
ating the pseudo-observations. While clearly fur-
ther optimization is warranted, this simple example
shows that the inverse model is quickly converging to
a simulation that reproduces the observations (cost
function decreased by 83%) by adjusting the scaling
factors towards the truth. Incorrect compensation
through adjustment of scaling factors for emissions
of SO2 and NOx was minimal. Further, results were
markedly improved compared to another test using
only the IMPROVE observations (cost function de-
creased by 61%), with more uniform progression of
the scaling factors toward the correct value when
using TES observations. For the actual proposed
research, we will consider a wide range of perturba-
tions (not just a domain wide factor of two), longer
time periods, more pseudo-observations and higher
resolution simulations, exploring the dependence of
convergence to the correct solution on the amount
and quality of the observation and prior information
provided to the inverse model. The impact on the
inversion’s accuracy of a priori values and covari-
ance constraints in the TES retrieval itself will be
explored through repeated tests altering these pa-
rameters.

A demonstration of how much information regard-
ing NH3 emissions can be extracted from a single
track of TES NH3 observations is given in Fig. 3(b).
Here we calculate the sensitivity of a single set of
model estimated NH3 retrievals, Hc, to anthro-
pogenic NH3 emissions over the course of several
previous days with the GEOS-Chem adjoint run-
ning at 2◦ × 2.5◦. The results are normalized to the
maximum sensitivity, in yellow, and the location of
the TES footprints along the track are marked with
green x’s. Owing to the dependence of the mod-
eled NH3 in those places on the amount of NHx,
and hence the amount of aerosol ammonium sulfate
and ammonium nitrate having in part come from
distant emissions, the influence is seen to be quite
widespread.

For an application with real data, we will use TES
observations throughout 2009 and compare these
to model estimates from the GEOS-Chem chemical
transport model in a global 2◦×2.5◦ simulation. To
estimate error covariances of the prior NH3 emissions
we will draw from literature describing the variabil-
ity and uncertainty in NH3 emissions. For example,
the work of Beusen et al. (2008) defines groups of
land-types relevant to NH3 emissions that can be
used to construct spatial correlation length scales
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Initial Guess Truth

(a) (b)
Figure 4: (a) TES instrumental sensitivity (sum of the rows of the averaging kernel) to NH3,
demonstrating boundary layer detection capabilities (figure from Beer et al., 2008). ?? Recovery of
a “true” profile of NH3 by the TES retrieval when starting from a prior NH3 profile generated from
a simulation with NH3 emissions half the magnitude of those used to generate the Truth profile.

tics representative of actual observations. For these tests, 87 pseudo TES observations were
used from July 14-19, 2005 at the locations in the midwestern U.S. between 110◦ to 90◦ E
and 30◦ to 45◦ N. The model is rerun using the base case emissions (E0), and a cost function
is calculated based on the discrepancy between the base case model estimates, Hc, and the
pseudo observations (see Eq. 10). NH3 emissions scaling factors (σ = ln(E/E0)) after only 4
iterations are shown in Fig. ??. These scaling factors were zero at the first iteration, but were
0.69 (=ln(2)) when generating the pseudo observations. While clearly further optimization
is warranted, this simple example shows that the inverse model is quickly converging to a
simulation that reproduces the observations (cost function decreased by 83%) by adjusting
the scaling factors towards the truth. Incorrect compensation through adjustment of scaling
factors for emissions of SO2 and NOx was minimal. For the actual proposed research, we will
consider a wide range of perturbations (not just a domain wide factor of two), longer time
periods, more pseudo observations and higher resolution simulations, exploring the depen-
dence of convergence to the correct solution on the amount and quality of the observation
and prior information provided to the inverse model. Note that numerous inverse modeling
tests can be performed with a single set of pseudo observations by simply varying the initial
guess. The impact on the inversion’s accuracy of a priori values and covariance constraints in
the pseudo retrieval itself will be explored through repeated tests altering these parameters.

For an application with real data, we will use TES observations throughout 2009 and
compare these to model estimates from the GEOS-Chem chemical transport model in a
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literature describing the variability and uncertainty in NH3 emissions. For example, the
work of Beusen et al. (2008) defines more than a dozen groupings of U.S. states that relate
to spatial correlations in NH3 emissions based on land use. Studies such as Stephen and
Aneja (2008) also give guidance on the likely spatial variability of NH3 emissions. Inversion
of the error covariance matrix will be calculated using matrix factorization algorithms as in
the 4D-var study of Chai et al. (2007).

x

x
x
x

x
x
x

Figure 6: Sensitivity of model estimated NH3 profiles (Hc) along a single track of actual TES data
with respect to NH3 emissions from the prior week. Sensitivities are scaled relative to maximums
(yellow), which themselves indicate the location of the TES track.

Inverse modeling of global NH3 emissions For application with real data, we will
use observations throughout 2009 and compare these to model estimates from the GEOS-
Chem chemical transport model in a global 2◦ × 2.5◦ simulation. Unlike inverse modeling
tests with pseudo observations, the degree to which the inverse model has converged to a final
solution is not readily know. The minimization of the cost function is typically considered
to have converged when the magnitude of the gradient norm has decreased by more than an
order of magnitude and/or the cost function has ceased to change significantly at subsequent
iterations. Past inverse modeling experience for a range of atmospheric chemical systems
has shown that 10-20 iterations are typically sufficient (Hakami et al., 2005; Henze et al.,
2008; Kopacz et al., 2009).
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Figure 3: (a) Progress towards optimizing the
NH3 emissions after four iterations using all pseudo-
observations. (b) Sensitivity of model estimated NH3

profiles (Hc) along a single track of actual TES foot-
prints (marked with x’s) with respect to NH3 emissions
from the prior week. Sensitivities are scaled relative to
maximum values (yellow).

for NH3 emissions. Studies such as Stephen and
Aneja (2008) also give guidance on the likely spa-
tial variability of NH3 emissions. Inversion of the
error covariance matrix will be calculated using ma-
trix factorization algorithms as in the 4D-var study
of Chai et al. (2007). The minimization of the cost
function will be considered to have converged when
the magnitude of the gradient norm has decreased
by more than an order of magnitude and/or the cost
function has ceased to change significantly at subse-
quent iterations.

We will also use additional air quality network
measurements of sulfate and nitrate, where available
(Sec. 4), to both constrain the inversion and provide
a means of evaluating the inverse modeling solutions
through cross validation, wherein some of the obser-
vational data is withheld during the inversion to be
used afterwards an independent check on the opti-
mized solution. Uncertainty and error correlations
of the solution will be estimated from the approxi-
mate inverse Hessian gleaned from the minimization
procedure (e.g., Muller and Stavrakou, 2005; Henze
et al., 2009). This approach to quantifying posterior

uncertainty utilizes the fact that well constrained
values correspond to sharp minimums in the cost
function while less constrained values have shallow
minimums. Possible biases owing to the initial guess
will be identified by restarting the inversion using a
different set of NH3 emissions and noting if this al-
ters the solution.
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