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1. INTRODUCTION 

 
Globally, wildland fire (wildfire and prescribed 

burning of forests and rangelands) contributes 
significantly to atmospheric pollution.  Pollutants 
emitted from fires include particulate matter, 
carbon monoxide, nitrogen oxides, and acrolein (a 
regulated hazardous air pollutant [HAP]) (Andreae 
and Merlet, 2001).  In the United States, the U.S. 
Environmental Protection Agency (EPA) estimates 
that 22% of the primary emissions of non-dust 
particulate matter less than 2.5 microns in 
aerodynamic diameter (PM2.5) came from non-
residential fires in 2001 (970,000 tons, source:  
AirData web site, http://www.epa.gov/air/data/). 

Exposure to wildfire smoke has been 
associated with increased eye and respiratory 
symptoms, medication use, physician visits, and 
exacerbated asthma (Kuenzli et al., 2006).  
Emissions of carbon monoxide and nitrogen 
oxides from fires contribute to ozone formation in 
the troposphere (the key component of 
photochemical smog).  Estimates of the magnitude 
of tropospheric ozone from biomass burning range 
from less than 15% to 40% of the global total 
(Levine et al., 1995; Galanter et al., 2000).  
Carbon particles from fires also contribute to 
climate forcing, both directly by increasing 
atmospheric reflectance, and indirectly by 
influencing the formation of clouds (Kaufman and 
Fraser, 1997). 

Accurately modeling wildland fire emissions 
requires many pieces of information, including fire 
location, ignition time and growth rate, fire 
intensity, and final size.  This information is 
needed at a daily or better temporal resolution to 
be useful for air quality modeling of smoke 
impacts. 

                                                      
*Corresponding author: Sean Raffuse, Sonoma 
Technology, Inc., 1455 N. McDowell Blvd., Suite D, 
Petaluma, CA, USA 94954-6503; 
e-mail: sraffuse@sonomatech.com 

Historically, for national scale emission 
inventories in the United States, area burned  
estimates have come from compilations of fire 
reporting systems from federal, state, tribal, and 
local agencies.  Given that data are originally 
collected in a variety of formats, compilation is 
costly.  Some fire reporting systems do not track 
individual fires, keeping only monthly statistics.  To 
create a fire emission inventory with daily 
resolution in a timely matter requires a different 
data source. 

Satellites have been used to detect fires 
globally for several decades (Dozier, 1981).  The 
global climate community routinely uses satellite-
based data to derive estimates of area burned 
(van der Werf et al., 2006).  Satellite data offer 
several advantages over ground reporting systems 
for estimating area burned over a large area (e.g., 
nationally).  Satellite data sets are available with 
global coverage in a single format, making them 
easy to work with.  Also, satellites detect fires that 
are often too small or too remote to be reported by 
human observation.   

There are, however, limitations in the use of 
satellite data for emission inventories.  Satellite 
instruments that provide global daily coverage of 
fires do not yet routinely provide an estimate of 
area burned for each fire.  Instead, a thermal 
anomaly or “hotspot” is detected and reported.  
The smallest fire that can be detected is 
instrument-, algorithm-, and condition-specific.  
Large fires will be detected as a cluster of several 
“hotspot” pixels.  To use this type of data, one 
must estimate the area burned per pixel.  Though 
algorithms exist for estimating total burned area 
directly from satellite observations of burn scars 
(Li et al., 2004) these algorithms are not routinely 
available.  Also, burn scar algorithms may have 
trouble detecting burns that occur below the forest 
canopy (understory burns).  Understory burns are 
very common in the southeastern United States, 
where millions of acres of prescribed burning 
occur annually. 
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Though satellites are able to detect many 
fires, they do not detect all fires.  Fires that are too 
small or too cold, are not burning during the 
satellite overpass, or are obscured by clouds go 
undetected.  Satellite fire detections have not been 
used previously to estimate area burned for the 
National Emission Inventory. 

Using data from ground reporting systems in 
concert with satellite fire detects can help improve 
fire area burned estimates.  The Satellite Mapping 
Automatic Reanalysis Tool for Fire Incident 
Reconciliation (SMARTFIRE) is an algorithm and 
database system designed to reconcile these 
disparate fire information sources to produce daily 
fire location and size information (Sullivan et al., 
2008). 

 
2. METHODOLOGY 

 
2.1 Fire Information Sources 

 
2.1.1 ICS-209 reports 

ICS-209 reports are created on a near-daily 
basis for large wildfires and wildland fire use 
(WFU) fires for which there is a federal response.  
ICS-209 reports contain useful information about 
particular fires or fire complexes from the incident 
command team on the ground, such as 
descriptions of the fuel loading, growth potential, 
and type of fire.  However, ICS-209 reports have 
several limitations as a data source for predicting 
daily emissions.  Daily estimates of actively 
burning areas are required, but ICS-209 reports 
provide only the ignition point of the fire and an 
estimate of the total area burned over the lifetime 
of the fire.  Also, ICS-209 reports are only created 
for a small subset of fires.  Fires that are not 
tracked with ICS-209 reports include prescribed 
burns, agricultural burns, and wildfires for which 
there is no federal response. 

To estimate daily area burned from ICS-209 
cumulative area burned, we subtracted the 
previous day’s reported area from the current day.  
Fires were modeled as a single point source 
located at the reported ignition point of the fire.  
Historical ICS-209 reports are available at the Fire 
and Aviation Management Web Applications 
(FAMWEB) web site (http://fam.nwcg.gov/fam-
web/). 
 
2.1.2 Moderate Resolution Imaging 
Spectroradiometer (MODIS) 

The MODIS instrument is onboard both the 
National Aeronautics and Space Administration’s 
(NASA) Terra and Aqua satellites.  Each 

instrument provides daily global coverage, with 
Terra passing over the conterminous United 
States in the late morning and Aqua passing over 
in the mid-afternoon.  One of the products 
available from MODIS is thermal anomalies, or 
“hotspots” (Justice et al., 2002).  MODIS hot spots 
are widely used to track actively burning fires on a 
global level.  Historical MODIS hotspot data are 
available from the United States Department of 
Agriculture Forest Service’s (USDAFS) Remote 
Sensing Applications Center. 

MODIS hotspots are detected when a given 
area is actively burning, but they do not directly 
provide an estimate of the area burned.  The 
MODIS hotspot product (also known as MOD14) 
has a nominal pixel resolution of 1 square 
kilometer (about 450 acres).  However, MODIS 
can detect fires that are much smaller.  To 
estimate daily area burned using MODIS requires 
an estimate of the area burned that each hotspot 
pixel represents.  We compared MODIS total pixel 
counts with final area burned for 30 fires ranging 
from 2,000 to 300,000 acres in size (Figure 1).  
The area burned was derived from final helicopter-
flown burn scar perimeters.  Total pixel count 
includes all hotspot pixels within the burn scar 
over the entire life of the fire.  We used a final 
value of 100 acres per MODIS pixel. 
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Fig. 1.  Relationship between total MODIS pixel count 
and final burn perimeter. 

2.1.3 SMARTFIRE 

SMARTFIRE uses both satellite-detected and 
ground-reported fires to produce daily fire 
information (locations and area burned).  
SMARTFIRE currently reconciles ICS-209 ground 
reports and hot spots from the National Oceanic 
and Atmospheric Administration (NOAA) Hazard 
Mapping System (HMS) (Ruminski et al., 2006).  
HMS data consist of compiled fire detection 
information from three different instruments 
onboard seven satellite platforms coupled with 
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human quality control.  Individual detections are 
inspected by a trained analyst for false detects 
and inaccurate geolocation.  The HMS product 
relies on data from the MODIS, Advanced Very 
High Resolution Radiometer (AVHRR), and 
Geostationary Earth Observing Satellite (GOES) 
instruments. 

 
2.2 Emissions Modeling Pathway 

 
The emissions for all three fire information 

cases were processed in the same way using the 
BlueSky smoke modeling framework (Larkin et al., 
2008).  The BlueSky framework is designed to 
facilitate the operation of predictive models that 
simulate cumulative smoke impacts, air quality, 
and emissions from forest, agricultural, and range 
fires.  The BlueSky framework allows users to 
combine state-of-the-science emissions and 
meteorological and dispersion models to generate 
results based on the best available models.  In 
other words, the BlueSky framework connects 
models that provide values needed to estimate fire 
emissions.  BlueSky allows the user to choose one 
of several models at each step in the smoke 
modeling process.  The models used for this study 
were the Fuel Characteristic Classification System 
(FCCS), Consume 3.0, and the Fire Emission 
Production Simulator (FEPS); the BlueSky 
pathway is shown in Figure 2. 

 

 
Fig. 2.  The BlueSky pathway used in this study. 

In addition to the standard emission products 
produced by FEPS (PM2.5, CO, etc.), 29 HAP 
species emissions were estimated based on 
emission factors provided by the EPA.  Fires were 
assigned fuel moisture values based on the 
nearest weather station from the USDAFS 
Wildland Fire Assessment System. 
 

3. RESULTS 
 
3.1 Emissions from SMARTFIRE 

 
Though emission estimates were calculated 

for many species, this paper focuses on the 
primary PM2.5 results.  All other pollutants were 
modeled with similar spatiotemporal patterns.  
Aerosol that formed secondarily in the atmosphere 
was not estimated.  Figure 3 shows the estimated 
primary PM2.5 emissions by month for each 
modeled year.  Wildland fire emissions in the 
contiguous United States exhibit a bimodal yearly 
pattern, with peaks in the spring and late 
summer/early fall.  Over the four years modeled, 
emissions in the spring season were fairly 
consistent year to year.  The summer/fall season, 
however, showed much more variability. 
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Fig. 3.  Modeled yearly primary PM2.5 wildland fire 
emissions by month for the contiguous United States. 

The bulk of emissions come from two regions:  
the west and the southeast.  This concentration 
can be seen in the emissions density plot shown in 
Figure 4, which shows the average annual tons of 
PM2.5 emitted per square mile, smoothed for 
display clarity.   
 

 
Fig. 4.  Average yearly PM2.5 emission density by state. 
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The national spatiotemporal pattern is shown 
in more detail in Figure 5, which depicts the 
monthly average PM2.5 emissions for each state.  
The springtime emissions are mostly from the 
southeastern states, where prescribed burning is a 
common management practice in spring.  The 
summer/fall emissions are higher in the west, 
particularly the northwest and California.  The 
largest single state monthly contribution is Idaho in 
August. 
 

 
Fig. 5.  Average monthly PM2.5 emissions by state. 

In reviewing the modeled daily area burned 
and PM2.5 emitted for the entire modeled time 
period (August 2002 through December 2006), it 
was noted that the area burned in the spring is 
similar in quantity to the area burned in the 
summer/fall, but the PM2.5 emitted is greater in the 
summer/fall.  The summer/fall burning is 
dominated by large wildfires in the west, while the 
spring burning largely reflects prescribed burning 
in the southeast, which results in less PM2.5 per 
area burned than the western wildfires.  Note also 
the relatively calm wildfire season in 2004. 
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Fig. 6.  Daily area burned and PM2.5 emitted (August 
2002 through December 2006). 

3.2 Fire Information Source Comparison 
 
Emissions for 2003-2006 were modeled using 

two other information sources to compare with 
SMARTFIRE, ICS-209 reports, and MODIS fire 
detects.  Neither of these data sets is independent 
from SMARTFIRE because both are used as 
inputs to the SMARTFIRE algorithm, so this is not 
a validation.  Rather, it is an intercomparison. 

Figure 7 shows the annual average area 
burned by state for the three fire information 
sources.  In the west, the totals are similar for all 
three data sources, with the exception of Nevada, 
where the ICS-209 value is much larger than the 
others.  The large ICS-209 value is caused by a 
typographical error in a single daily report:  an 
extra zero was added to the area of a large 
wildfire.  The error was corrected on subsequent 
daily reports, but highlights the type of errors that 
occur in the ICS-209 data, which are created by 
human data entry. 

 

 
Fig. 7.  Annual average area burned by state for ICS-
209 reports, MODIS fire detects, and SMARTFIRE. 

Note that total burned area in the west is 
dominated by wildfires, which is captured well both 
by ground reports (ICS-209s) and satellite 
(MODIS).  SMARTFIRE combines both ground 
reports and satellite data, but seems to 
successfully avoid double-counting.  The fires in 
the southeastern United States are largely 
prescribed burning.  ICS-209 reports are not 
created for the vast majority of prescribed burns, 
so that data set reports little acreage in the 
southeastern states.  Both MODIS and 
SMARTFIRE report area burned for the southeast, 
but SMARTFIRE estimates over twice the total 
area throughout the region. 
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The primary reason for the differences 
between MODIS and SMARTFIRE in the 
southeast is shown in Figure 8.  SMARTFIRE 
uses NOAA HMS as its source of satellite-derived 
fire detects.  HMS gathers fire detects from 
several instruments, including MODIS.  Although 
MODIS is the most sensitive and sophisticated 
instrument that HMS relies on for fire information, 
MODIS data are typically only available twice per 
day over the lower 48 states.  Thus, small, short-
lived fires, burning during cloudy conditions (such 
as many prescribed fires in the southeastern 
United States.) are easily missed by the MODIS 
instrument.  HMS incorporates fire detects from 
GOES and AVHRR in addition to MODIS.  GOES 
in particular is useful for detecting short-lived fires 
because, as a geostationary instrument, it detects 
fire every 30 minutes.  Figure 8 shows the density 
of fire hotspot pixels detected by MODIS and HMS 
for 2004 in the southeast. 

 

 
Fig. 8.  Fire pixel hotspot density for MODIS and HMS 
for 2004. 

Another key advantage of HMS over other 
satellite-derived data products is the human 
quality control that is applied to the data set.  
Certain industrial sources that operate at very hot 
temperatures often cause false positives in fire 
detection algorithms.  The standard MODIS 

product, for example, often shows fires in Detroit, 
Michigan; Cleveland, Ohio; and the northern tip of 
West Virginia, which are known industrial sources.  
These false fires are not as common in the HMS 
data. 
 
4. SUMMARY AND CONCLUSIONS 

 
The BlueSky framework was used to produce 

wildland fire emission inventories for the 
conterminous United States for August 2002 to 
December 2006 using SMARTFIRE as the fire 
information source and the most recent models for 
emission processing (FCCS, Consume 3.0, and 
FEPS).  The emission inventory processing for 
2003-2006 was repeated using ICS-209 reports as 
the fire information source and repeated again 
using MODIS fire detection hotspots.   

All fire information sources produce similar 
estimates of area burned in the western United 
States where larger wildfires are dominant.  In the 
southeastern United States, which has significant 
prescribed burning, ICS-209 reports provide little 
information on area burned.  SMARTFIRE reports 
more burning than MODIS because it incorporates 
information from more satellite instruments, 
particularly the GOES satellites, which are able to 
detect many short-lived fires that MODIS may 
miss. 

For specific fires, emission estimates may be 
very different between the various fire information 
sources even if the area burned estimates are 
similar.  This is because ICS-209 reports only 
report the ignition point of the fire; the fuel loading 
at that point may be very different from the areas 
that the fire eventually burns into.  Individual fire 
burned area estimates are still difficult to pin down, 
but SMARTFIRE appears better than ICS-209 
reports or MODIS fire detects alone.  

There is significant spatiotemporal variability in 
wildland fire emissions and especially wildfires.  
An annual emission inventory needs to be year-, 
day-, and location-specific to accurately account 
for these emissions.  Using one year’s emissions 
for another year may result in poor emission 
estimates for modeling purposes. 
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