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1. Introduction 
 
Aeolian dust deposition has proven to be a 

critical source of iron (Fe) to high nitrate low 
chlorophyll (HNLC) oceanic regions.  Out of the 
three main HNLC areas (subarctic north Pacific, 
equatorial Pacific, and the Southern Ocean) the 
Southern Ocean (SO) is suggested to be the 
largest region where marine productivity is 
limited by the micronutrient Fe (Watson et al., 
2000).  The importance of this region is reflected 
in a hypothesis that the glacial-interglacial 
change of atmospheric CO2 can be attributed to 
changes in the atmospheric dust-Fe supply to 
the SO (Martin and Fitzwater, 1988).  Recently 
this theory has been challenged by pointing out 
the importance of marine processes in the 
supply of Fe to the surface ocean (Meskhidze et 
al., 2007; Blain et al., 2007).  The role of aeolian 
Fe deposition for marine ecosystem productivity 
is further complicated by the fact that ocean 
productivity is influenced not by the total amount 
of dust-laden Fe, but the portion of Fe that is in a 
soluble (or bioavailable) form (Jickells et al., 
2005 and references therein).  Today there are 
very few studies that can help constraining 
mineral dust and dust-laden Fe deposition to the 
SO.  Also seasonality and transport pathways 
for the source regions contributing mineral dust 
to the SO remain to be poorly defined. 

In this study we apply GEOS-Chem, a global 
chemistry-transport model, to estimate fluxes of 
mineral dust and dissolved Fe (DFe) deposited 
to the South Atlantic Ocean (SAO).  Patagonia is 
considered as the major source (contributing up 
to 90% of total dust) of aeolian Fe deposited to 
the SAO (Gaiero et al., 2006).  Therefore, the 
objective of this study is to better quantify 
Patagonia’s influence on dust and DFe fluxes to 
the surface waters of the SAO.  Key aspects 
addressed here are the dust source locations 
and emission rates in Patagonia, seasonality, 
total fluxes of dust and soluble Fe to the SAO, 

and the model’s ability to capture the episodic 
dust events from Patagonia. 

 
2. Methods 
 
GEOS-Chem is a global chemistry transport 

model (CTM) driven by assimilated 
meteorological fields from the Goddard Earth 
Observing System (GEOS) of the NASA Global 
Modeling Assimilation Office (Bey et al., 2001).  
To evaluate dust emission and transport we use 
the latest version of GEOS-Chem (v8-01-01).  
The model is driven with GEOS-5 
meteorological fields at a 2° x 2.5° (latitude-
longitude) grid resolution and 47 vertical levels.  
For dust mobilization, GEOS-Chem is using the 
DEAD (Dust Entrainment and Deposition) 
scheme (Zender et al., 2003).  The DEAD 
scheme was shown to capture much of the 
amplitude and seasonal cycle in dust 
climatologies at surface sites of the North Pacific 
Ocean (Fairlie et al., 2006).  For the analysis of 
dust mobilization, transport, and deposition from 
Patagonia we conducted a yearlong model 
simulation between October 2006 and 
September 2007.  This time period was selected 
to take advantage of the most recent 
meteorological fields (GEOS-5) available for the 
model.  Simulation period also allowed us to 
capture two contrasting dust advection seasons: 
high dust of austral summer and the low dust of 
winter along with daily 24-hour averaged dust 
fluxes. 

We have recently implemented an Fe 
dissolution module Meskhidze et al. (2005) into 
the new version of GEOS-Chem.  However, due 
to the large simulation time required for running 
the model with the full chemistry, the DFe 
modeling results reported here are for the time 
period between August 2001 and February 2002 
using different version of GEOS-Chem (v7-03-
06).  This version was shown to be in a good 
agreement with the experimental data for the 
deposition of bioavailable Fe in subarctic North 



Pacific Ocean, downwind from east Asia 
(Solmon et al., 2008). 

To accurately simulate DFe deposition to the 
SAO, Patagonian dust characteristics such as 
emissions, transport, and deposition values 
must be treated correctly.  Emission location and 
source strength were averaged annually and 
compared to past model simulations (Li et al., 
2008; Tegen et al., 2004).  Comparison of 
GEOS-Chem yearly averaged dust deposition to 
past studies (Wagner et al., 2008; Li et al., 2008) 
allows us to assess the model performance for 
mineral dust fluxes to SAO.  Comparison of 
GEOS-Chem results to other modeling studies is 
used here due to the severe lack of in situ data 
in this part of the world ocean.  To estimate total 
amount of dust advected from Patagonia, daily, 
monthly, and yearly averaged dust fluxes are 
calculated along the Patagonia coast.  

 

 
 

Figure 1.  GEOS-Chem average dust source location 
and emission rates.  Yellow markers indicate dust 
report locations available for the region.  Stations used 
in the vicinity of large dust source regions are (from top 
to bottom) Bahia Blanca, Viedma, San Antonio Oeste, 
Trelew, and Comodoro Rivadavia. 

 
3. Results 
 
3.1 Dust Mobilization and Source Regions 
 
An accurate dust mobilization scheme is the 

first step for reasonable representation of long 
range transport and deposition of dust (Zender 
et al., 2003).  Comparison of GEOS-Chem 
predicted dust source locations and emission 
rates with past modeling studies showed 
consistency in model predicted dust mobilization 
regions in Patagonia.  GEOS-Chem 
performance was further analyzed by overlaying 

the model predicted dust emission regions over 
the Google Earth topography maps.  Analyses 
revealed that the strongest dust sources were 
dry lake/river beds and low-lying topographical 
regions. 

It has been proposed, that the major fraction 
of desert dust from Patagonia may be deposited 
to the SAO in just a few episodes of the large 
dust outbreaks (Mahowald et al., 2008). 
Therefore, large episodic dust storms in 
Patagonia could have a profound effect on the 
total amount and spatial pattern of dust fluxes to 
the SAO.  The ability of GEOS-Chem to capture 
individual dust events was evaluated using 
surface dust reports from Patagonia 
(http://www.wunderground.com/global/AG.html).  
The stations chosen here (see Figure 1) are 
located near the model predicted strongest dust 
source regions.  Visibility reports from these 
stations were compared to model predicted dust 
column concentrations for the qualitative 
evaluation of the model’s ability to capture 
individual dust events.  

 

 
 
Figure 2.  Displays several modeling and 
measurement based estimates of total dust deposition 
to the South Atlantic and SO.  GEOS-Chem (red) 
predicted annual deposition compares well with past 
estimates. 
 

3.2 Dust Deposition to the SAO 
 

GEOS-Chem predicted yearly averaged 
dust deposition to the SAO is ~15 Tg yr-1. In 
Figure 2 we compare this value to past modeling 
and measurement studies constraining the SAO 
domain.  This figure shows that GEOS-Chem 
predicted magnitude of dust deposition 
compares well with most of the past studies, 
except one by Gao et al. (2003) that predicted 



dust fluxes almost an order a magnitude higher 
compared to all other studies. 

 

 
 
Figure 3.  Seasonal dust deposition to the SAO 
simulated by GEOS-Chem (red) and compared to 
Gao et al., 2003 (blue). 

 
In Figure 3 seasonal dust deposition to the SAO 
simulated by GEOS-Chem is compared to Gao 
et al. (2003).  This figure shows that both 
models capture dust deposition seasonality 
correctly, i.e., show the highest values for 
austral summer and the lowest for winter.  
Overall, GEOS-Chem simulated large seasonal 
difference (~65%) in mineral dust deposition to 
the SAO.  Further model evaluation using in-situ 
measurement is needed to better constrain dust 
transport and deposition to the SAO. 

 

Figure 4.  GEOS-Chem predicted yearly averaged 
dust deposition to the SAO.  
 

In addition to total yearly and seasonal 
amounts of deposited dust, transport path and 

spatial variability of fluxes are also important 
factors in dust deposition studies.  Figure 4 
demonstrates yearly averaged (October 2006 
and September 2007) dust deposition over the 
modeled domain.  The spatial pattern of dust 
deposition is consistent with past studies (e.g., 
Wagner et al., 2008; Li et al., 2008).  Figure 5 
shows a time series of GEOS-Chem predicted 
column dust concentration and corresponding 
surface dust reports in Patagonia.  The data 
markers indicate days in which dust storms were 
reported in the station’s visibility report.  We 
chose to concentrate on the austral summer 
months due to dust storms being more frequent 
and in larger magnitude compared to the rest of 
the year.  As seen from Figure 5 GEOS-Chem 
predicted elevated dust concentrations on 
almost every day in which a dust storm was 
reported by one (or more) station.  The only 
large discrepancy was on February 4th, 2007 
(black circle).  During this time none of the 
stations reported visible increase in dust 
abundance in the atmosphere, while model 
predicted elevated dust concentrations.  Plotting 
dust vertical profiles over the station locations, 
allowed us to elucidate a possible cause for 
such discrepancy.  Vertical profiles of dust 
demonstrated (not shown) that the dust plume 
was entrained into the free troposphere and 
transported over the stations at high altitude.  
While the model simulated large column dust 
concentrations, very little dust was present at 
the surface.  Therefore, the surface dust 
concentrations at the stations may have not 
been large enough to be reported as a 
considerable dust event.  While being only a 
qualitative comparison, the model showed a 
sound ability to reproduce episodic dust events 
that compared well to the station reported dust 
storms.  Over the entire simulation period, 
GEOS-Chem captured the majority (over 75%) 
of reported dust storms.  

 
3.3 Dissolved Fe fluxes to the SAO 
 
Past modeling studies show, that 

atmospheric transport and transformation of 
aerosols could play considerable role in dust-Fe 
solubilization.  However, to simulate the 
chemical evolution of dust plumes and quantify 
DFe fluxes to the SAO, mineralogical 
composition of Patagonian dust needs to be 
considered.  The initial mineral content of the 
dust particles was designed to be representative 
of the transportable fraction of mineral dust from  
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validate GEOS-Chem results for the deposition 
of bioavailable Fe to the SAO, in situ 
measurements for dissolved Fe concentration in 
Patagonian dust aerosols are required.  None 
the less, preliminary results of this study show 
that GEOS-Chem/DFe provides good foundation 
in which future improvements to DFe module 
can be conducted.  
 

4. Conclusion 
 

This modeling study shows that GEOS-
Chem was able to provide a good base model 
for the prognostic evaluation of dissolved Fe 
fluxes to the SAO downwind from Patagonia.  
Patagonia’s dust emission, transport, and 
deposition were quantified and analyzed during 
the period of October 2006 to September 2007.  
Through comparison with existing model results 
for the SAO domain we show that GEOS-Chem 
is capable of simulating total fluxes of mineral 
dust advected from Patagonia.  Using qualitative 
agreement with remotely sensed images of dry 
river/lake beds and ground based station reports 
of dust outbreaks, dust source regions and 
seasonal and daily variations of dust 
concentrations were also assessed.  In this 
study we estimate total dust deposition to the 
SAO to be ~15 Tg yr-1. This value, along with 
seasonal dust transport and deposition pattern, 
is consistent with past studies.  We also show 
that GEOS-Chem was capable of capturing over 
75% of station reported dust storms.  During the 
low dust season (June - August 2006) we show 
that the majority of mineral dust mass (>65%) 
was deposited to the SAO in isolated, episodic 
events.  While during the high dust season 
(December 2006 - February 2007), due to large 
background dust concentration, only ~27% of 
dust got deposited to the SAO during the top 5% 
of large dust outbreaks.  Therefore the ability of 
GEOS-Chem to capture individual dust 
outbreaks is important throughout the year, 
especially during times of low background dust 
concentrations and less frequent dust events. 

One of the main interests for mineral dust 
deposition to the SAO is the concentration of 
bioavailable Fe that is a limiting micronutrient for 
ocean biota.  Our preliminary modeling result 
using GEOS-Chem/DFe suggest a total of 
~6x109 grams DFe was contributed to the SAO 
from Patagonian dust from July, 2001 – January, 
2002.  This result suggests that soluble Fe 
fraction is ~1.5% of total dust-laden Fe from 
Patagonia deposited to the SAO.  To better 
elucidate spatial and temporal variation of DFe 

fluxes to the SAO and the role of aeolian Fe for 
ocean productivity in this HNLC region, a full 
year simulation using the latest version of 
GEOS-Chem (v8-01-01) with implemented DFe 
module is presently under way. 

In this study, GEOS-Chem/DFe 
demonstrated the ability to simulate dust and 
DFe transport and deposition to the SAO that is 
consistent with previous modeling efforts and 
measurement data.  Our future model 
development will focus on the improvements to 
Fe dissolution scheme by addition of combustion 
(industrial and biomass burning) iron sources, 
photo-reductive dissolution of iron containing 
minerals, and photochemical cycling of Fe (II) 
and Fe (III).  This will allow us to estimate the 
effects of future changes such as increased 
pollution and variability in dust emissions, on 
DFe fluxes to the SAO. 
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