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1. INTRODUCTION 
 

The availability of near-field air quality 
modeling creates the opportunity to perform local 

scale health impact analysis and also poses special 

challenges. It is important to match the scale of the 

air quality data with spatially resolved human health 

data, including effect estimates and baseline 

incidence rates. Such matching can be problematic, 
as local scale health data are frequently not 

available, or spatial cover is incomplete. In this 

paper we examine techniques for performing local 

health impact analyses, using a recent analysis in 

Detroit as an example. 

 

2. OVERVIEW OF NATIONAL HEALTH 

IMPACT METHODS 
 

There are four key components to typical health 

impacts estimation:  

 
1. Estimate a change in air quality, using ambient 

air quality data (from ground-based or satellite 

measurements), modeled air quality, or a 

combination of the two. 

 

2. Combine air quality data with population 

information to determine changes in 
population-level potential exposure in a form 

that is relevant given the epidemiological 

evidence (e.g., the appropriate averaging time). 

 

3. Combine changes in population exposure to 

ambient air pollution with impact functions
1
 to 

                                                   
*Corresponding author: Neal L. Fann, mail drop C439-02, 

RTP, NC 27711; e-mail: fann.neal@epa.gov  
1 The term “impact function” as used here refers to 

the combination of a) a C-R function obtained from the 

epidemiological literature, b) the baseline incidence 

estimate for the health effect of interest in the modeled 

population, and c) the size of that modeled population.  

The impact function is distinct from the C-R function, 

which strictly refers to the estimated equation from the 

epidemiological study relating the relative risk of the 

health effect and ambient pollution.  We refer to the 

generate distributions of changes in the 

incidence of health effects.  The impact functions 

are constructed using population data, baseline 
health effect incidence and prevalence rates, 

and C-R functions. 

 

4. Characterize the results of the HIA, through the 

use of summary statistics (e.g. mean, 95 percent 

confidence interval), graphs (e.g. cumulative 

distribution functions and box-plots), and maps. 
 

The health impact function described in step three 

estimates the change in a health outcome, such a 

chronic bronchitis, for a particular population 

exposed to some level of air pollution. A typical 

health impact function might look like: 

 

         ∆� � �0 · ��	·∆
 � 1
                        (1) 

 

where y0 is the baseline incidence (the product of 

the baseline incidence rate times the potentially 
affected population), β is the effect estimate (C-R 

function), and Δx is the estimated change in ambient 

concentrations.  There are other functional forms, 

but the basic elements remain the same. 

 

3. ANALYTICAL CHALLENGES TO SCALING 

DOWN HIA FROM NATIONAL TO LOCAL 

LEVELS 
 

Traditional EPA benefits assessments have used 

coarse-scale health and air quality input data to 
assess the health impacts of national-scale 

regulatory interventions. Such analyses produce 

national-scale data that would be problematic to 

report at higher resolutions. For any given location, 

national-scale data is unlikely to describe local-scale 

health impacts.  
 

                                                                                
specific value of the relative risk or estimated coefficients 

in the epidemiological study as the “effect estimate” or “C-

R function”.  In referencing the functions used to generate 

changes in incidence of health effects for this paper, we 

use the term “impact function”. 
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Although health impact assessments are 

theoretically applicable at sub-national scales, 

multiple issues arise in developing any of the key 

inputs to a health impact assessment—the baseline 
incidence rates, health impact functions, or air 

quality data. As such, it would be inappropriate to 

assume that the local scale assessment is simply a 

more geographically discrete version of the national 

or regional assessment that may rely on the same 

national-scale inputs. Below we discuss the 
challenges to developing each data input. 

 

3.1 Air Quality Modeling 

 

The changes in modeled or monitored air quality 

ultimately drive the health impact assessment. It 

may be possible to provide air quality estimates by 
employing near-field dispersion modeling. 

Alternately, it may be possible to combine 

dispersion and photochemical grid modeling. 

Because this paper focuses on the development of 

health data to perform local impact assessments, we 

do not further elaborate on air quality modeling 

techniques here except to note that the resolution of 
the estimated air quality change has a direct effect 

on the resolution of the exposure estimates. 

 

3.2 Develop Effect Estimates 

 

The effect estimate relating changes in air pollution 
exposure to adverse health effects should 

adequately describe this relationship for the specific 

location analyzed. National multi-city estimates may 

or may not suffice when performing an urban scale 

analysis. The demographics, health status and 

exposure patterns of local populations may differ 

significantly from those analyzed in national-scale 
epidemiology studies. However, effect estimates 

specific to the area of interest may not be available. 

Or, the smaller populations observed in local scale 

analyses may yield  effect estimates that lack 

sufficient statistical power to be useful.  

 
When performing a national-scale analysis, EPA 

frequently employs meta-analysis and pooling 

techniques. Under this approach, studies are 

weighted by the inverse of their variance. This 

particular technique gives more weight to studies 

with smaller variances. The pooling approach can 

generate a more robust national effect estimate, but 
it is less useful for generating local effect estimates 

because it does not address the inherent 

heterogeneity in populations and exposures across 

areas. 

 

More recent ozone (Stieb et al., 2002; Bell et al., 

2004; Bell et al, 2005; Ito et al, 2005, Levy et al, 

2005) and PM (Levy et al., 2000; Stieb et al., 2002; 

Dominici et al., 2003; Franklin et al., 2007) 
epidemiology studies have attempted to examine 

the variability in effect estimates across cities to 

determine whether effect estimates vary as a 

function of co-pollutant concentrations, 

temperature, air conditioning prevalence, and other 

factors. Among other findings, locations with higher 
air conditioning prevalence appear to have a 

systematically smaller effect from ozone (Levy et al., 

2005) and PM (Franklin et al., 2007). The 

implication of this for developing effect estimates 

for specific locations is that national mean estimates 

may need to be adjusted to account for local factors 

that are related to the effect estimate, although it 
should be recognized that the covariates in these 

meta-regressions may not necessarily be the causal 

factors driving the C-R functions. 

 

Detroit is among those areas where city-specific 

estimates are available. Several ozone (Bell et al., 

2004; Schwartz, 2004; Huang et al. 2004; Ito 2003) 
and PM (Ito, 2003) epidemiology studies have 

generated effect estimates specific to Detroit. These 

studies estimate the change in ozone-related  

premature mortality and respiratory 

hospitalizations and PM-related respiratory 

hospitalizations. While these studies offer city-
specific estimates, several estimates suffer from 

poor statistical power. Moreover, these studies do 

not cover the full suite of health endpoints typically 

assessed in a benefits analysis.  

 

Considering the trade-offs described above, the 

process for selecting appropriate effect estimates for 
HIA requires careful development of profiles of 

characteristics of the city of interest and study 

locations to find the closest match along a range of 

attributes that can impact effect estimates. Finally, 

in cases where local estimates lack statistical power, 

it may be best to apply national effect estimates. 
 

3.3 Baseline Incidence Data 

 

Unlike with effect estimates, it is likely that 

substantial local baseline incidence data could be 

available for at least some health outcomes. First, as 

a general point, the way in which the health outcome 
is defined should be in agreement with the 

epidemiological studies underlying the effect 

estimates, and the spatial resolution and scale of the 

baseline incidence or prevalence rate should ideally 

match the resolution of the HIA.  
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Figure 1 demonstrates the importance of applying 

local scale incidence rates. This figure shows how 

zip-code level asthma hospitalization rates vary 
substantially within Detroit, ranging from a 

maximum of 129 to a minimum of 10 per 10,000. 

This range is significantly different than the single 

national estimate of 28 in 10,000 that EPA applies in 

its regulatory analyses (EPA, 2005; EPA, 2006). 

 

 
 

Fig. 1. Comparison of the Geographic Distribution of Zip-

Code Level Asthma Hospitalization Rates and a 

Hypothetical 20% Reduction in Monitored PM2.5 in the 

Detroit Metropolitan Area 

 

 

The policy implications of using alternate baseline 

incidence rates become clear when estimating the 
total changes in asthma-related hospital admissions 

resulting from changes in PM2.5 levels. For example, 

using the EPA default baseline hospitalization rate 

generates a total reduction in asthma-related 

hospitalizations of 36 cases (90th percentile 

confidence interval from 17 to 54). In contrast, using 
the local-scale rates produces a reduction in asthma-

related hospitalizations of 53 cases (90th percentile 

confidence interval from 26 to 81). Clearly, using 

national-scale baseline incidence rates would under-

estimate the total change in this particular health 

endpoint in Detroit, and would not capture the 

spatial and demographic variability in that endpoint. 
Similar differences in the results of local-scale HIA 

have been observed when using geographically-

averaged baseline rates versus demographically-

stratified rates that vary by location (Levy et al., 

2002a). 

 

The chief impediment to using such high resolution 

baseline incidence data is that it is very resource-

intensive to produce or it may simply not be 

available for the outcome of interest. For example, 
while the Wayne County Department of Public 

Health maintains a comprehensive asthma 

epidemiology database which covers Detroit, it was 

necessary for an epidemiologist to reformat these 

data to generate tables in a format suitable for use in 

a health impact assessment.  
 

4. UNCERTAINTIES AND LIMITATIONS TO 

LOCAL HIA 
 

The traditional approach to characterizing 
uncertainty in the HIA has been to use the standard 

error associated with the effect estimate to generate 

confidence intervals. However, such an estimate 

only describes a narrow range of the total 

uncertainty. There is no comparable information 

available for the remaining impact function 

elements, including the baseline incidence rates, 
exposure estimates and air quality changes.  

For the reasons described in the preceding 

sections, the local HIA imposes additional 

uncertainties—which are in turn difficult to 

characterize quantitatively. Thus, the local HIA is 

effected by the same uncertainties as the national 

assessment  and also introduces key uncertainties. 
Sensitivity analyses, which vary key input 

parameters such as effect estimates and baseline 

incidence rates—may be a useful substitute. Finally, 

to some extent these uncertainties may be mitigated 

by careful selection of input data, particularly effect 

estimates. 
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