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1. INTRODUCTION 

 
Accuracy of Air Quality Model (AQM) results 

and sensitivity of atmospheric pollutants to 
changes in emission is of serious concern in air 
quality planning and formulation of policies 
involving the selection of control strategies for 
multiple pollutants. Proper air quality assessment 
requires accurate estimation of the uncertainty in 
photochemical sensitivities. Many studies so far 
have tried to find out the sensitivity of atmospheric 
pollutant concentrations to precursor emissions 
due to uncertain model input parameters. 
However, the uncertainty of these sensitivities to 
uncertain photochemical model input parameters 
remains largely unexplored. We intend to focus on 
this grey area of research and present a direct 
way of gauging the accuracy of the photochemical 
sensitivities of ozone and particulate matter (PM) 
to precursor emissions. We also present some 
preliminary results supporting the efficacy of our 
approach by applying it to a case study for ozone 
and PM attainment planning in Georgia using 
High-order Decoupled Method (HDDM) in the 
Community Multi-scale Air Quality (CMAQ) model. 
 
2. MOTIVATION 
 

This work is done as a part of the project 
funded by U.S. EPA STAR grant program # 
R833665. The state of Georgia pioneered an 
integrated approach for linking photochemical 
models with economic and health benefit analyses 
in its recent State Implementation Plan (SIP) 
development efforts for ozone and fine particulate 
matter (PM2.5) (Cohan et al., 2006). This integrated 
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approach aimed at satisfying three major criteria’s 
(Figure 1):  

 
(1) Air Quality – to bring down the multiple 

criteria pollutants by the help of a 
advanced atmospheric sensitivity analysis 
technique like HDDM (Hakami et. al., 
2003; Boylan et al., 2006) in conjunction 
with CMAQ (Byun and Schere, 2006);  
 

(2) Estimation of cost of control strategies 
and emission reduction using cost 
assessment tools at worst monitor 
(specially power plants and specific 
anthropogenic sources); and 

 
(3) Assessment of health benefits (Marmur, 

2006) using BENMAP for a given 
population exposure (Abt Associates, 
2003) 

 
Although these major improvements were 

done with respect to the previous SIP 
development, all analyses were conducted in a 
deterministic sense, with no formal efforts to 
quantify uncertainty.  Our work in this overall 
project would be estimating this uncertainty. Here, 
we will present the detailed methodology for part 
(1) of the 3 sectors discussed above and present 
some preliminary results. In the future, results 
from this study will be used to find a cross-linkage 
between the 3 broad areas and come up with best 
suitable and optimum control strategies for 
Georgia. 

 
3. BACKGROUND 

 
Secondary pollutants have a nonlinear 

response to their precursor emissions, as a result 
of which the sensitivity of these secondary species 
is not always constant. For example, ozone may 
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respond differently to reductions in nitrogen oxides 
or volatile organic compounds emissions 
depending on the base levels of these emissions 
and the size of reductions. Therefore, it becomes 
very important to accurately determine the 
nonlinear responses of these photochemical 
sensitivities. In 2003, Hakami et. al. introduced 
High-order Decoupled Direct method (HDDM) as 
an evaluation tool for CMAQ which is capable of 
efficiently determining the nonlinearities in AQM. 
HDDM estimates the high-order sensitivity 
coefficients by calculating the local derivatives. 
This method is used here to find out the response 
of the sensitivity of secondary pollutants to 
precursor emissions due to uncertainty in the 
emission inventories (high-order self sensitivity) or 
due to perturbed meteorological/chemical 
conditions like reaction rates, deposition velocities 
or other precursor emissions (cross-sensitivities).  

 
4. METHODOLOGY 

 
Sensitivity coefficient is evaluated by 

calculating the response of a secondary pollutant, 
ozone and fine particulate matter in this case, to 
any perturbation in the precursor emission. Let us 
assume that atmospheric concentration of a 
secondary pollutant is C, then the first order 
sensitivity (slope) of this pollutant to any 
perturbation p in the jth parameter is given by 
(Cohan et. al, 2005)  

 

 

where εj is the scaling variable with a nominal 
value of 1. Since C is a non-linear function of j, 

 will not be a constant term for all points of the 
response function. Therefore, it becomes 
necessary to calculate this non-linear variability 
(curvature) which is estimated by the second-order 
sensitivity coefficient (high-order self sensitivity),  
 

 

 
Similarly, the second-order sensitivity of C to jth 
parameter when parameter k ≠ j is perturbed is 
given by (cross-sensitivities), 
 

 

 
These local derivatives calculate accurately the 
sensitivities for small degree of uncertainty, say 
within 30% of nominal value, which is most often 
encountered in practice.  
 

Now, when we have additional condition 
where any parameter  is uncertain by . 
Then, following the same logic as above we have, 
 

 
 

Figure 1. Linked models applied in previous Georgia ozone and PM2.5 planning to assess the impacts of potential 
control measures on attainment and health (Cohan et al., 2006).   
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where  is the perturbation due to the uncertain 
scaling variable ϕj with a nominal value of 1. Due 
to this uncertain parameter, the modeled 
sensitivity values will be different from actual 
sensitivities as we are now calculating derivatives 
at a point different from the earlier point on the 
response function (Figure 2).  
 
Hence, the actual first-order sensitivity of a 
secondary pollutant to jth emission  when j is 
uncertain by uj will be given by, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Pollutant response to model input parameter 
due to perturbation and uncertainty within the model 
values. [Figure illustrates the response of C due to 
perturbation in jth parameter Pj when Pj is uncertain by  
-∆ϕPj. Modeled response is expressed as the sensitivity 
coefficients  and  and actual sensitivities due to 
uncertainty are  and ]. 

 
Similarly, actual sensitivity of a secondary 
pollutant to jth emission Sj

(1)* when parameter k ≠ j 
is uncertain by uk will be given by, 
 

 
 
Extending this to our current goal, we step forward 
to venture into the real world where multiple input 
parameters to a given AQM are uncertain at the 
same time. The recipe to analyze a situation like 
this is quite straight-forward. The actual sensitivity 
of a secondary pollutant to jth emission Sj

(1)* when 

both parameters j and k ≠ j are uncertain can be 
given by, 
 

 

 

In the above equation, ,   can be 
calculated using CMAQ-HDDM based on 
equations 1, 2 and 3 respectively. and  
are the scaling factors for uncertainty in input 
parameters j and k respectively. 
 

Many studies have been conducted to 
determine the uncertain nature of input 
parameters used in an air quality model like 
CMAQ (Gao et. al. 1996, Bergin et. al. 1999, 
Hanna et. al. 2001, Deguillaume et. al. 2007 & 
2008). For each input parameter, probability 
distribution functions can be developed specifying 
the upper and lower bounds within which the 
parameter values can vary (e.g. L-N function with 
± 1.3σ values, where σ is the standard deviation 
from the mean, µ). To generate values for 
uncertainty scaling factors in equation 7, and 

, we limit ourselves to these distributions that 
are available from literature.  
 

Therefore, can be evaluated using 
equation 7 for all values of and  within 
the PDFs and running HDDM over and over again 
for all cases. However this would require 
inordinate number of runs which become very 
expensive to be carried out and thus would be 
computationally inefficient. Instead we can adopt a 
surrogate model approach where we can 
randomly sample out and  values from 
these input PDFs and plug them into equation 7 to 
solve for the output actual sensitivity using 
simple/Bayesian Monte Carlo analysis.  

 

The output sensitivity will also have a 
random distribution which will be a non-linear 
function of input variables representing the 
randomness of the modeled sensitivity. This 
uncertainty can be characterized by curve-fitting 
techniques using these random Monte Carlo 

CB 
A 

PA
* 

,  

,  

Pj 

Uncertainty 
-∆ϕPj 

A* 

-∆εPj 
Reduction/Perturbation 

B 

PA PB 



Presented at the 7th Annual CMAS Conference, Chapel Hill, NC, October 6-8, 2008 

4 

outputs. Thus, this method will help us to probe 
the uncertainty associated with modeled 
sensitivities when multiple model input parameters 
are uncertain.  
 
4. CASE STUDY - GEORGIA 

 
A 12 km modeling domain for the region of 

Alabama-Georgia (ALGA) was selected and our 
focus was specially based on Georgia and CMAQ 
version 4.6 was use. HDDM was used to calculate 
the first and high-order sensitivities. A summer 
episode ranging from May 30 – June 06, 2009 has 
been chosen as the test case period. Analysis was 
carried out to probe the effect of single uncertain 
input parameter on ozone sensitivity to its 
precursor emissions. Results for multiple 
uncertainties are not presented here. 

 
Uncertain AQM input parameters are 

prioritized and selected based on literature (Gao 
et. al. 1996, Bergin et. al. 1999, Hanna et. al. 
2001, Beekman & Derognat 2003, Deguillaume et. 
al. 2007 & 2008). Results have been presented 
here for 2 scenarios: (1) Uncertain emission 
inventory and (2) Uncertain reaction rate. For the 
first scenario emission of NOx was considered as 
an example case and for the latter case reaction 
rate for HNO3 formation was selected.  

 
5. PRELIMINARY RESULTS 

 
5.1 Uncertain Emission Inventory 

 
As an example case for this study, the impact 

of a ±30% change (uncertainty) in modeled NOx 
emission inventory on ozone sensitivity to NOx 
and VOC emission is analyzed (Figure 3).  

 
Ozone sensitivity to Atlanta NOx generally 

increases when the actual NOx emission is 
greater than the modeled inventory value; 
however some locations observe NOx disbenefit 
(Figure 3a & 3b). On the other hand, sensitivity of 
ozone to Atlanta VOC shows slight increment 
when modeled NOx inventory is smaller than the 
actual emission (Figure 3c & 3d). 

 
5.2 Uncertain Reaction Rate 

 
To study the response of ozone sensitivity to 

NOx emission when there is an uncertainty in the 

photochemical reaction rates, an example case of 
±30% change (uncertainty) in the rate constant for 
NO2 + OH → HNO3 is selected. It is found that the 
sensitivity of ozone to Atlanta NOx gradually 
decreases when the NOx emission is actually 
greater than the reported value (Fig 3e & 3f).  

 
5.3 Conclusion 

 
From the above results we find that 

uncertainty plays a vital role in the selection of 
control strategies for a given region. For example, 
in section 5.1 (Figure 3a & 3b), if we did not 
consider the uncertainty in NOx emission then we 
might end up saying that in order to reduce O3 
levels we have to bring down Atlanta NOx, which 
is actually not going to happen if NOx emission is 
greater than the inventoried value. Similarly if 
reaction rate of NO2 + OH → HNO3 is larger than 
expected then the response of ozone reduction to 
emission control actually decreases. 

 
6. SUMMARY 

 
A unique method of estimating the uncertainty 

of ozone sensitivity to precursor emissions due to 
multiple uncertain air quality model input 
parameters is presented here. A model has been 
introduced which involves Monte Carlo analysis as 
a post-processor alongwith CMAQ-HDDM. In the 
selection process for an overall State 
Implementation Plan (SIP) for ozone attainment, it 
must be ensured that the ensemble of individual 
controls is effective in the overall attainment of the 
National Ambient Air Quality Standard (NAAQS). 
To demonstrate this generally Brute Force is 
conducted to estimate the response of pollutant 
sensitivity to the ensemble of separate emission 
controls due to multiple parametric uncertainties. 
However, the computational burden and numerical 
noise makes this process unfavorable. A surrogate 
inexpensive model development like this can be 
used in place of the traditional Brute-Force method 
to bridge these gaps by averting numerical noises 
and saving computational time.  

 
      However CMAQ-HDDM is not presently 
capable of calculating high-order PM sensitivities; 
hence brute force will be used for such cases.  
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Figure 3. Response of ozone sensitivity to NOx (a, b, e & f) and VOC (c & d) emission at time of daily maximum 
8-hr ozone when NOx emission (a, b, c & d) and Reaction rate for NO2+OH → HNO3 (e & f) is actually (left) -30% 
less and (right) +30% more than the inventoried value used in Air Quality Models. 

(f) (e) (f) 

(d) (c) 

(a) (b) 
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7. FUTURE WORK 
 

In the future we intend to extend our work to 
inform the selection of control strategies that 
satisfy the three criteria discussed in Figure 1.  
Control costs for effective mitigation measure will 
be estimated using available control cost software 
and health assessment will be carried out for 
different population exposures. These analyses 
will be linked to re-examine control strategy for 
ozone and PM2.5 attainment in Georgia. 
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