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1. INTRODUCTION

Characterizing the spatial variability of air pollu-
tants in an urban setting is critical for improved air 
toxics exposure assessments (Isakov et al., 2006; 
Touma et al., 2006), for model evaluation studies 
(Ching et al.,, 2006b), and for air quality regulatory 
applications.  Photochemical air quality simulation 
models provide gridded concentration fields for air 
quality assessments and for air quality regulatory 
applications (Byun and Ching (1999).  However, 
outputs of air quality models are grid size depen-
dent.  For urban applications, information is need-
ed at fine scales for exposure assessments.  For 
such applications, in principle, this need is met by 
applying nesting methods to grid models such as 
Community Multiscale Air Quality (CMAQ) model 
and other such models to the desired resolution. 
This approach has constraints; computational ex-
penses increase as grid size decreases, and mod-
els are not recommended for running at grids 
smaller than ~1 km.  Yet, it is known that significant 
spatial variability (hereinafter, sub-grid variability or 
SGV) occurs even at scales smaller than 1 km 
(Ching et al., 2006a & 2006b, 2005, Isakov et al., 
2006, and Majeed et al., 2004, ) due to various 
reasons including the presence of within-grid 
sources as well as photochemical-dynamic interac-
tions. CMAQ provides multiscale, grid resolved 
concentrations. Modeling at neighborhood-scale is 
valuable when significant variability is present at 
that scale, but may still underestimate variability. 
Therefore, SGV should be derived from a combina-
tion of - fine-scale modeling with models such as 
CMAQ, modeling of local sources, and also from 
photochemistry in turbulent flows. SGV treated as 
concentration probability density functions (PDFs) 
are appropriate and provide essential information 
for improved human exposure assessments.

2. OBJECTIVE OF STUDY 

Previously, as discussed in Ching et al., 
2005; et al., 2006a, b, there are various types of 
applications for which the introduction of SGV 
information would be a useful adjoint to the 
concentrations from air quality modeling results. 
They suggested relaxing grid model outputs from 
its current fully deterministic state to quasi 
stochastic fields in which the gridded fields are 
weighted with statistical parameters of the SGV. 
Simple examples could include such parameters 
as Coefficient of Variation (COV), a user specified 
percentile of the distribution, peak (or maximum) 
values or its comparable max-to-min range values. 
Several approaches are being investigated in 
parameterizing the SGV characteristics for 
applications in exposure assessments -  running 
CMAQ at urban scales (Ching et al.,2004a), 
developing a hybrid approach that combines local 
scale dispersion modeling with CMAQ, application 
of Large Eddy Simulation with Chemistry models 
(e.g., LESChem (Herwehe, 2000) and 
incorporating outputs from building scale and 
physical modeling studies. Once such SGV 
information is derived, however, an approach to 
incorporate SGV for the CMAQ modeled 
concentration is needed.  We present an approach 
here.

Let Cg be defined as the CMAQ gridded 
concentration values and CSGV, the SGV 
concentration distribution about its grid cell value. 
Now, define the two additional terms - 
concentration adjusted for SGV effects (SAC), and 
a non-dimensional weighting factor f1(CSGV) 
derived from modeling or monitoring. Furthermore, 
we introduce two additional factors – a factor f2 

which is a function dependent on surrogate 
exposure parameters (e.g., population residence 
distributions by distance for roadways, in the case 
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of mobile sources) and another factor f3 which  is a 
function dependent on photochemical dynamical 
contributions.

321 **)(* ffCSGVfCSAC g= (1)

Function f1 (CSGV ) is the focus of current 
investigation. f1 (CSGV) can be expressed in a 
number of ways.  In principle, it would be desirable 
for each cell’s CSGV to reflect the properties of its 
SGV distribution function (DF). However, 
preliminary evidence suggests that the distribution 
function for SGVs differ throughout the modeling 
domain (Herwehe et al., 2004). Here we use 
limited statistical descriptions that can still provide 
a representative metric for each grid cell’s DF.  

We explore the following three options for the non--
dimensional weighting factor:   

        COVCSGVf += 1)(1
            (2a)

/GridValuePercentile951)(1
thCSGVf +=   (2b)

     aluePeak/GridV1)(1 +=CSGVf          (2c)

where COV is the standard deviation/grid value 
called the Coefficient of Variation, 95th (or other) 
percentile of the distribution/grid value and  peak of 
the distribution/grid value. The factor in (2a), differs 
from (2b) and (2c) because it is computed about its 
grid mean value, (2b) and (2c) refer to the 
distribution itself. 

The SGV within a regional-scale modeling grid 
exists for all the pollutants that are being modeled. 
For the pollutants that have primary and secondary 
components, SGVs do exist for each of them. The 
local-scale dispersion modeling is one of the tools 
available to us for assessing the SGV of primary 
components that exists within regional-scale 
modeling grids (Isakov et al., 2006; Touma et al., 
2006).  For this study we examine the use of local-
scale dispersion models (AERMOD in this case) 
for assessing the SGV within the regional-scale 
modeling grids that result from various local 
sources. We are also interested in comparing such 
results against observations and for this purpose, 
we utilize data from the Enhanced Delaware Air 

Toxics and Assessment Study, E-DATAS (DNREC 
Report, 2006).  Also, given that traffic is a major 
emissions source in urban areas, and because 
such emissions within a city have a high degree of 
complexity in their spatial distributions and source 
strengths, we expect them to contribute to a 
significant fraction of each model grid’s SGV.  For 
this study, we choose to examine the SGV of 
modeled formaldehyde (HCHO).

 3. APPROACH

Our study involves using a hybrid modeling 
approach (Isakov et al., 2006; Touma et al., 2006) 
for determining the fine scale details of 
concentration fields and the E-DATAS database for 
corroboration. The E-DATAS was conducted in the 
Wilmington, Delaware (DNREC Report, 2006). 
During intensive fields study campaigns, a special 
set of continuous measurements of  several air 
pollutant species including formaldehyde, ozone, 
Cr6+ and fine particles were made on board an 
instrumented van deployed in mobile transects of 
downtown Wilmington.  Repeated sets of transects 
were performed, over a set, criss-cross type 
course that covered many of the streets; each 
transect taking approximately one hour to 
complete. Figure 1 shows the modeling domain 
and the sampling route of the mobile van.  The 
sampling route provides a bases for spatial details 
of air pollutant characterization on scales finer than 
1 km. (In this figure, the continuous data were 
binned at 100m intervals, and 3 hour averages 
computed from the morning runs.  Such data 
provides information useful to compare with SGVs 
from model calculations.  
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Fig. 1.  Mobile sampling during E-DATAS.  Study area is 
Wilmington, Delaware.  

We performed a set of CMAQ simulations for 12km 
with nests at 4 km and 1 km grid sizes.  The air 
toxics version of CMAQ that was used for this 
study utilized SAPRC-99 chemical mechanism for 
a Lambert-Conformal projection.  The 1999 
emissions inventory and 2001 meteorological 
datasets were utilized for the CMAQ runs.  For the 
SGV, we hereinafter, only consider the primary 
sources; we model its contributions using a local 
scale model, AERMOD, to provide the fine scale 
distribution for CMAQ (Isakov et al., 2006). Local-
scale modeling was conducted for all source 
categories; for the mobile sources the AERMOD 
was applied to link-based traffic emissions data.  A 
comprehensive emissions inventory developed for 
calendar year 2003 was utilized for this purpose. 
However, the modeling was conducted for the 
calendar year 2001 so that the regional- and local-
scale modeling can be related. While the CMAQ 
modeling is performed for Lambert Conformal and 
AERMOD for UTM projections, the 4 x 4 km CMAQ 
grid cell and the AERMOD 4 x 4 km modeling area 
overlap significantly. We then compute and 
compare distributions between model simulations 
and the mobile sampling data.  Additionally, 
although the actual sampling (July-August, 2005) 
and the modeling period (July 2001) differed, it is 
assumed that the differences would be relatively 
small since (a) we do not expect the emissions to 
change significantly between 2001 and 2005 and 
(b) the simulations are for a month, and the 
sampling results are a one week average to 
minimize day-to-day variations.         

4. RESULTS 

Figure 2 is the result of CMAQ runs nested 
down to 4 km grid size.  The 4X4 km cell is located 
over downtown Wilmington., DE.  The results 
shown are the average diurnal variation 
Formaldehyde (HCHO) for July 2001. For 
formaldehyde, both primary and total HCHO are 
depicted for that 4X4 cell.  We see the contribution 
of primary emissions for this cell ranging from to be 
about 1/5 to 1/3 of the total during the early 
morning to noon period with strong increases after 
sunrise from traffic and industry.  The strong 
increase in the ratio of total to primary 
concentrations in the afternoon is a result of the 
increase in the height of the mixing layer. Also, 
photo-chemistry and regional transport processes 
becomes dominant factors in the afternoon; the 

total and the ratio show large increases and 
decreases respectively. 

Fig. 2.  Results of CMAQ simulations for July 2001 
showing sample diurnal variations for a 4X4 km grid cell 
over downtown Wilmington, DE.  

Figure 3 shows an example of the 
AERMOD model results for HCHO. Values shown 
are normalized to the modeled peak value of the 
month. The AERMOD simulations shown are for 
receptor grids of 200m in UTM coordinates for a 
domain of approximately 10X10 km. The figure 
also shows the mobile sampling route implemented 
during the E-DATAS. The primary sources include 
all point, area and line sources; the latter from road 
link-based emissions data. The results shown are 
the July 2001 average for 1200 EDT, 2001.  For 
the total concentration field, one would need to 
incorporate the primary contribution from AERMOD 
with the CMAQ results (Isakov, et al., 2006). The 
AERMOD simulation shown is arbitrarily chosen for 
1200 EDT.  While the magnitudes changed over 
the course of a day, only slight changes in the 
spatial patterns are noted over the course of a day. 
From the AERMOD simulation, we observe a 
significant amount of spatial variability. Variability 
at this scale is not possible using CMAQ alone for 
typical urban scale applications of 1 km grid size 
for CMAQ.  The results show clearly, the significant 
contributions from the highway sources to the 
variability pattern.  Additionally local hot spots of 
emissions are apparent.
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Fig. 3.  AERMOD simulation of primary emissions of 
HCHO in the Wilmington, DE area. The mobile sampling 
route in the E-DATAS project is indicated.  The 
simulations were made in UTM coordinates for July 2001 
@ 1200 EDT.    

Figure 4 presents time series plots for 
three SGVs as defined by (2a), (2b) and (2c) for 
the mobile van measurements made during the 
summer 2005 campaign July 31st through August 
5th.  These measurements were made during the 
hours of 8 am through 5 pm.  The mean, 95 
percentile and peak concentrations utilized in the 
estimation of these SGVs are based on the hourly 
datasets, that is, measurements for the hours of 8 
am to 5 pm.  Van measurements indicate that the 
SGVs based on COV can be as high as [1.1, 1.4], 
SGVs based on 1+ 95 Percentile/Mean can be as 
high as [2.1, 2.6], and those based on 1 + 
Peak/Mean can be as high as [2.1, 3.0].

    

Fig. 4.   Three different forms of  SGV parameterization 
derived from mobile van measurements during the July 
31 – August 5, 2005 summer campaign  

The type of results shown in Figure 4 will, 
in principle, be an indicator of the magnitude and 
characteristics of the sub-grid variability of a grid 
model of 4X4 km size over Wilmington, DE. 
Figure 5 displays time series of three possible 
parameters representing SGV (top) and the SGV 
adjusted concentrations, SACs, grid concentrations 
influenced or adjusted fields (bottom) based on the 
SGV parameters from local scale modeling.  The 
SACS shown here are the adjusted CMAQ results 
shown in Figure 2 for HCHO. Each of the SACs 
shown is defined using the CMAQ mean for the 
hour. This introduces a sensitivity resulting in large 
SACs when the mean is small, especially for 
example, the example of peak-to-mean.  Other 
definitions may be more satisfactory and are being 
explored. We can also note that the SGVs 
estimated from the van measurements and 
modeling are comparable. 
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Fig.5. Three different forms of SGV parameterization 
derived from results of AERMOD modeling of the 4X4 
km cell over Wilmington DE for HCHO for July 2001 
(top).  SGV weighted HCHO concentrations from CMAQ 
using corresponding SGV parameterizations.    

5. DISCUSSIONS AND  SUMMARY

We recognize that variability exists at 
scales smaller than can be resolved with 
photochemical grid models.  Under the assumption 
that such variability can be important in exposure 
assessments, we have been attempting to develop 
modeling tools that will provide this additional 
dimension of information. To this end, this paper 
has applied local scale modeling (AERMOD) to 
provide an estimate of variability from primary 
emissions.  The results of this study substantiates 
our hypotheses that significant amounts of spatial 
variability do exist; that application of dispersion 
models can provide a means to characterize and 
estimate such variabilities for a primary pollutant 
species, here HCHO.  We note, however, that the 
modeling results and comparisons with 
observations noted here have invoked many 
assumptions, e.g., model and measurement 
periods differed.  Local scale modeling will be 
inadequate for reactive species and thus, we still 
see a need for modeling tools such as coupled 
Large-Eddy Simulations with photoChemistry 
models (e.g., LESChem, Herwehe, 2000) or local-
scale models capable of addressing chemistry to 
assess secondary components correctly as to 

provide a greater range of SGVs than can be 
obtained using local scale and fine scale CMAQ 
modeling alone. Future efforts will utilize the SGVs 
from these various modeling tools to applications 
that include exposure assessments, model 
evaluations and weight-of-evidence analyses in 
regulatory models. Regarding SACs, the examples 
shown here show that sensitivity to some 
definitions e.g., peak/mean may be excessive; 
thus, the SAC definitions shown here are to be 
considered preliminary. Clearly, this situation is to 
be considered an opportunity for the air quality 
communities to provide input and guidance on 
appropriate SAC definitions for different 
applications.      
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