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1.  INTRODUCTION 
 

HiPERiSM Consulting, LLC, (Durham, North 
Carolina) has linked with AS1MET Services 
(Blanco, Texas) to form a joint venture, HiCLAS1 
(http://www.hiclas1.com), dedicated to bringing 
High Performance Computing (HPC) capability to 
Environmental Modeling. The HiCLAS1 mission is 
to develop (or enhance) software and improve 
performance on current and future computers for 
legacy Air Quality Models (AQM). The first model 
chosen for performance enhancement by 
HiCLAS1 is the U.S. EPA's AERMOD developed 
by the U.S. EPA Office of Air Quality Planning and 
Standards (OAQPS), Emissions Monitoring and 
Analysis Division (EMAD), at the U.S. EPA in 
Research Triangle Park, North Carolina, U.S.A 
(SCRAM). In-house Quality assurance testing and 
results from Beta testers show performance of the 
serial version of AERMOD-HPC that is 1.95 to 
3.43 times faster than the EPA distribution of 
AERMOD. The purpose of this presentation is to 
provide quantitative evidence of the measured 
hardware performance metrics to demonstrate 
how the improvements in efficiency are achieved.  
Results with the serial version of AERMOD-HPC 
are presented for Intel Pentium Xeon processors. 
The subject of numerical differences is taken up in 
technical reports available on-line (HiCLAS1). 
 
2. CHOICE OF HARDWARE AND 
OPERATING SYSTEM 
 

The hardware used for the results reported 
here is the Intel Pentium 4 Xeon processor with 
separate platforms using  the Linux™ operating 
systems for both 32-bit and 64-bit platforms, 
respectively. The hardware used for the results 
reported here is the Intel Pentium 4 Xeon (P4) and 
Pentium Xeon 64EMT (P4e) processors. 
 
* Corresponding author address: George Delic, 
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, 
NC 27514-0569. Email: george@hiclas1.com 

The operating system (OS) is HiPERiSM 
Consulting, LLC’s modification of the Linux™ 2.6.9 
kernel to include a patch that enables access to 
hardware performance counters. This modification 
allows the use of the Performance Application 
Programming Interface performance event library 
(PAPI, 2005) to collect hardware performance 
counter values as the code executes. Results for 
selected performance metrics are presented with a 
view to giving insight into how the application is 
mapped to the architectural resources by an un-
named compiler. 
 
3. BENCHMARK TIMINGS 
 

Four benchmarks are used with the number of 
sources varying from 10 to 963, number of 
receptors from 771 to 916, and the number of 
meteorological hours from 2160 to 8760. Details 
on the benchmarks are available elsewhere 
(HiCLAS1). Two version of the U.S. EPA’s 
AERMOD model are used here: the executable 
distribution, designated AERMOD-EPA, and the 
version compiled from the (unmodified) source 
distribution designated as AERMOD-EPA/SRC. 
The U.S. EPA source and executable are 
available on-line (SCRAM). 

To create the High Performance Computing 
(HPC) version of AERMOD the source code for 
the U.S. EPA distribution was progressively 
modified to enhance performance. Speedup of the 
HPC version over the EPA model is shown in Fig. 
1 (AERMOD-HPCS versus AERMOD-EPA) and 
Fig. 2 (AERMOD-HPCS versus AERMOD-
EPA/SRC). The results of Fig. 2 are for both 
versions compiled from source with identical 
compiler options. 

Whether comparing against the U.S. EPA 
executable or source code compiled with the same 
compiler options AERMOD-HPCS always delivers 
superior performance. The remainder of this report 
gives some in reasons as to why this is the case. 
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Fig. 1 displays the ratio of runtimes for AERMOD-HPCS 
and AERMOD-EPA for three Pentium 4 Xeon machines 
(A to C) with a 32-bit Windows OS. This shows that, for 
four Cases, performance enhancement ranges from 1.9 
to 2.77 times faster than AERMOD-EPA (depending on 
the platform and data set used in the benchmark). 
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Fig.2. Speedup of AERMOD-HPCS as measured by the 
ratio of the wall clock time for the U.S. EPA AERMOD 
version (compiled from source code) divided by the wall 
clock time for AERMOD-HPCS for the same compiler 
options for four cases. 
 
 
4. HARDWARE PERFORMANCE EVENTS 
 

The hardware used for the results reported 
here is the Intel Pentium 4 Xeon (P4) and Pentium 
Xeon 64EMT (P4e) processors. For this hardware 
performance counters were used to measure 
performance metrics and some values are 
summarized below.  
 
4.1 Operations and instructions 
 

AERMOD-HPCS delivers higher Mflops rates 
as is shown in Fig. 3 for the 64-bit Linux case. 
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Fig. 3 Mflops for AERMOD in EPA (epa) and HPCS 
(hpc) versions for four cases. 
 

One important contributing factor to higher 
Mflops is that AERMOD-HPCS delivers higher 
vector/SSE instruction rates as shown in Fig. 4. 
However, performance gains for AERMOD from 
enhanced vector instructions alone is limited 
because of the lack of vector loop structure and 
the predominance of control transfer instructions. 
These stall the vector pipeline and cycles are lost 
to loading of new instructions. 
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Fig. 4 Vector instruction rates for AERMOD in EPA 
(epa) and HPCS (hpc) versions for four cases. 
 
 
4.2 Memory footprint 
 

For AERMOD in general, the rate of total 
memory instructions issued is voluminous. The 
consequence of AERMOD’s memory footprint is 
that the path to memory becomes a critical 
performance bottle-neck. This bottle-neck is 
somewhat ameliorated in AERMOD-HPCS 
compared to AERMOD-EPA as is described in the 
following. 
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Fig. 5 Memory instructions per floating point instruction 
for AERMOD-HPCS (hpc) compared to that for the U.S. 
EPA’s distribution (epa) for four cases. 
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Fig. 6 Memory instructions per flop for AERMOD-HPCS 
(hpc) compared to that for the U.S. EPA’s distribution 
(epa) for four cases. 
 

Fig. 5 shows the load balance of memory 
versus floating point instructions and 
demonstrates the extent to which AERMOD is a 
memory-bound application. As a consequence, 
AERMOD is extremely sensitive to any inefficiency 
in memory access. It is notable that AERMOD-
HPCS reduced this load imbalance somewhat, but 
it is still critical. Fig. 6 shows that for each  flop 
there are more then 14 memory instructions in all 
cases on either P4 (not shown) or P4e platforms. 
This is a gross imbalance suggesting that the CPU 
is starved of data and spends excessive cycles in 
an idle state. 

 
 
4.3 Branching instructions 

Control transfer instructions are a significant 
source of lost CPU cycles in AERMOD and chief 
among these are branch instructions. Mispredicted 
branch instructions on deep pipelined processors 

are an important cause of lost performance, 
because instructions in the mispredicted path are 
cancelled and operations are not completed. The 
pipeline is flushed and new instructions are loaded 
with the result that cycles are lost to arithmetic 
performance. Fig. 7 shows that in all cases, on 
both 32-bit  (not shown) and 64-bit platforms, 
AERMOD-HPCS has reduced mispredicted 
branch instruction rates and this correlates 
positively with higher Mflops. 
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Fig. 7 Logarithm of total number of mispredicted branch 
instructions for AERMOD-HPCS (hpc) compared to that 
for the U.S. EPA’s distribution (epa) for four cases. 

 
 
4.4 TLB Cache usage 
 

The translation lookaside buffer (TLB) is a 
small buffer (or cache) to which the processor 
presents a virtual memory address and looks up a 
table for a translation to a physical memory 
address. If the address is found in the TLB table 
then there is a hit (no translation is computed) and 
the processor continues.  The TLB buffer is 
usually small, and efficiency depends on hit rates 
as high as 98%. If the translation is not found (a 
TLB miss) then several cycles are lost while the 
physical address is translated. Therefore TLB 
misses degrade performance. In the case of 
AERMOD it is the instruction TLB misses that are 
critical. Higher instruction TLB miss rates suggest 
that the processor pipeline stalls more frequently 
because of a higher rate of control transfer 
instructions. This is due to numerous procedure 
calls and voluminous mispredicted branch 
instruction rates.  
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Fig. 8 TLB misses per second for AERMOD-HPCS 
(hpc) compared to that for the U.S. EPA’s distribution 
(epa). Note that the instruction misses (IM) are reduced 
in AERMOD-HPCS for each of four cases. 
 

While the TLB data miss rates (DM) have 
increased in AERMOD-HPCS relative to the EPA 
version, performance has improved, suggesting 
that it is the TLB instruction miss rates that are 
important for performance in AERMOD. The 
AERMOD-HPCS version is more efficient in 
reducing instruction TLB miss rates (IM) through 
optimization and resource allocation compared to 
the EPA version. The most dramatic reduction is in 
Case 2 for the 32-bit platform, as shown in Fig. 8, 
and this explains (in part) why AERMOD-HPCS 
has so much better performance compared to the 
EPA version (see Case 2 in Fig. 2). 
 
4.5 L1 Cache usage 
 

A cache miss occurs when data or instructions 
are not found in the cache and an excursion to 
higher level cache, or memory, is necessitated. 
Cache misses result in lost performance because 
of increasing latency in the memory hierarchy. 
Memory latency is smallest at the register level 
and increases by an order of magnitude for a L1 
cache reference, and another order of magnitude 
to access L2 cache. In the case of AERMOD this 
analysis will focus on the L1 cache behavior. Fig. 
9 shows L1 cache miss rates for data (DCM) and 
instructions (ICM). Even though the ICM rate has 
been scaled the reduction for AERMOD-HPCS 
versus the EPA version is evident and has a 
positive correlation with the TLB instruction miss 
rate reduction shown in Fig. 8. 
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Fig. 9 Million L1 cache misses per second for 
AERMOD-HPCS (hpc) compared to that for the 
U.S. EPA’s distribution (epa) for four cases. 
 
5. WHY IS AERMOD-HPC FASTER? 
 

The code transformation applied in AERMOD-
HPCS take cognizance of procedures occurring at 
the leaves of a deep calling tree. Such procedures 
invariably have no loop structure but consist of 
simple arithmetic statements and conditional code 
blocks. The most frequently called procedures 
typically have little arithmetic work. These are 
some of the reasons for lack of vectorizable loops 
and the high rates of branching instructions in the 
U.S. EPA version of AERMOD. As a result the 
extremely high instruction TLB misses for 
AERMOD are a critical source of performance 
limitations. High memory instruction rates are due 
to high TLB instruction miss rates and also to 
correlated L1 instruction cache miss rates. This 
behavior is ameliorated by the improved efficiency 
of the AERMOD-HPCS version in reducing the 
performance consequences of this behavior. 
AERMOD-HPCS is faster than the U.S. EPA 
version AERMOD-EPA/SRC because it delivers: 

• Higher Mflops rates 
• Lower number of memory instructions per 

floating point instruction 
• Lower mispredicted branch instruction 

rates 
• Lower instruction TLB miss rates 
• Lower L1 instruction cache miss rates 
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6. CONCLUSIONS 

This performance analysis of the U.S. EPA 
version of AERMOD, shows that it is a memory 
intensive application with large rates of control 
transfer instructions such as branching logic and 
procedure calling overhead. These features result 
in large observed rates for branching instructions 
and instruction TLB misses. These, in turn, result 
in stalled pipelines and cycles lost to arithmetic 
operations. In combination these characteristics of 
the AERMOD code place a limit on the optimal 
performance possible from it on commodity 
platforms. This is because, by design, commodity 
hardware solutions offer a cost effective 
compromise between processor clock rates, cache 
size, and bandwidth (or latency) to memory. 

The AERMOD-HPCS version goes some way 
to ameliorate these performance limitations. As a 
result gains in computational efficiency translate 
into reduced wall clock time. However, there is still 
scope for further improvements and progress will 
be reported in subsequent reports at the HiCLAS1 
URL where the AERMOD-HPCS version of 
AERMOD is available at the download pages 
(HiCLAS1). 
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