

Air Strategy Assessment Program

Presentation for CMAS Conference September 29, 2005

Darryl Weatherhead, Bryan Hubbell, Dan Loughlin, David Misenheimer, Pat Dolwick, Sarah Mazur U.S. EPA

Overview

- What is ASAP?
 - Purpose
 - Uses
- Current Version Details
- Example Application
- Future Directions

What is ASAP?

Air Strategy Assessment Program

- PC-based screening tool
- Supports specification, evaluation, and comparison air pollution control strategies:
 - AirControlNET
 - Control costs
 - Multi-pollutant emissions reductions
 - Response Surface Metamodel
 - Air quality impacts (O3 and PM2.5)
 - BenMAP
 - Health benefits

Terminology

oenn

More specialized

ASAP: A decision support tool based on Phoenix tailored for specific problem and decision-maker needs.

> Phoenix: A framework for Integrated air quality assessment and policy analysis built on MIMS

> > MIMS: A generic framework for integrated modeling

4

What are the anticipated future uses?

- EPA Regulatory Impact Assessment
 - Estimating the costs and benefits of regulations
 e.g., PM NAAQS Review
- Screening Tool for Control Strategy Assessment
 - Evaluating the relative efficacy of controls on different source categories
 - Identifying and comparing cost-effective control strategies
- Local and Regional Air Quality Planning
 - Evaluating the relative effectiveness of local versus national controls

Why use ASAP?

- Instantaneous "what if" analysis based upon stateof-the-art modeling
- Limited computing resources needed
 ASAP runs on a typical desktop computer
- Quick turn-around time
 - Specifying and evaluating a control strategy takes only minutes
- User-friendly graphical user interface
 - Hides complexity of the component models
 - Handles model linkages and automates execution
 - Automatically generates summary tables and figures

What are the limitations of using ASAP?

ASAP is a screening tool

- ASAP results are intended to identify costeffective control strategies
- ASAP results may inform local and regional planning but needs to be verified with regulatory modeling tools
- The ASAP modeling components have been configured by EPA to facilitate linkage and carry out specific common analyses

ASAP Functionality and Components

Basic Functionality

Specify Control Strategy Evaluate Costs and Emissions Reductions Estimate **Air Quality Impacts** Calculate **Health Benefits Generate Reports**

ASAP Data Relationships

Incorporates 3 Sets of Relationships into a Single Tool

Incorporates the Metamodel Relationships between Emission Reductions & Air Quality

Uses Other Previously Established Relationships

ASAP Status

Current work

 Complete demo version of ASAP for conducting O3 assessments for Eastern US and Chicago/Milwaukee nonattainment areas (available late 2005)

Near-Future Work

- Develop PM components of ASAP for national assessments as part of PM NAAQS Review proposal RIA (Dec 2005)
- Develop multi-pollutant version for Final PM NAAQS Review RIA (Fall 2006)

Future Work and Applications (2006 & beyond)

- Provide template for others to develop targeted regional and/or local assessment capabilities
- Incorporate optimization and uncertainty analysis capabilities

Current Project: Ozone Demonstration Version

- Focus: Development of cost-effective ozone control strategies
 - Nonattainment areas

(Chicago, Northeast Corridor)

- Demo tool consists of:
 - AirControlNET Version 4.0 Cost Data
 - CAMx-based O3 Response Surface Metamodel
 - Eastern US for 2015 w/ CAIR baseline
 - NOx and VOC reductions for specific sectors
 - Differentiates Northeast Corridor and Chicago

BenMAP Version 2.2 with new O3 health end-points

Example Analyses

Policy Exercise 1:

 What are the impacts (cost, air quality, health benefits) of a 10% reduction in onroad & non-road NOx & VOC emissions?
 Policy Exercise 2:

How can we achieve a 10 ppb reduction in ozone for the Baltimore nonattainment area? What are the costs and benefits?
 We will run through Policy Exercise 1

ASAP: Main Screen GUI

≜ ASAP File Menu	
Air Strategy Assessment Program	
	, Č
Manage Strategies	Create, Edit and Delete Strategies.
View and Compare Results	View the results generated by running a strategh
ASAP Overview	View a quick overview of the core ASAP functionality.
Background Information	Data tables, maps, and figures for data used in ASAP.

Example Application Cost Curves Analysis

Cost analysis impacts of 10% reduction in onroad & nonroad NOx & VOC emissions - GUI screenshot of the Cost Curve of onroad NOx factor

Example Application: Metamodel Analysis

- Metamodel analysis of impacts of 10% reduction in onroad & nonroad NOx & VOC emissions
 - GUI screenshot of Response Surface Metamodel Visual Policy Analyzer

Example Application: Benefits Analysis

 BenMAP analysis of health benefits of 10 % mobile NOx and VOC reduction nationwide

Plot shows change in O3 mortality

Example Application: Results

- Emissions Reductions
 - NOx = 1,400 tons per day
 - VOC = 940 tons per day
- Air Quality Changes
 - 0.1 to 3.1 percent reduction in 8hr O3 in Eastern US nonattainment counties
 - Average reduction of 1.3 ppb
- Costs
 - Chicago: \$709 million total cost
 - Northeast: \$2.136 billion total cost
 - Note: these costs are a high estimate of mobile costs.
- Benefits
 - Premature mortality (benefit = \$3.3 billion)
 - Total avoided incidences of premature death = 600
 - School absences (benefit = \$70 million)
 - Total reduction in absences = 931,000
 - Minor restricted activity days (benefit = \$27 million)
 - Total avoided MRAD = 540,000

Summary

- ASAP as an integrated framework allows us to leverage best science for timely screening across multiple policy alternatives.
- By linking these data, tools, and models ASAP facilitates multi-pollutant assessments & identifies truly cost-effective and beneficial control strategies to address complex air quality problems.

AirControlNET: Summary

- A relational database tool for conducting control strategy and costing analysis
 - Combines detailed control measure database on EPA emissions inventories to compute source- and pollutant-specific emission reductions and associated costs
 - Provides costs and emissions reductions for user-selected control strategies
 - Pollutants include: NOx, SO2, VOC, PM10, PM2.5, NH3, CO, Hg
- Used to support OAR economic analyses since the late 1990's (e.g., ERCAM-NOx and ERCAM-VOC in '97 PM/O3 NAAQS)
- Re-design underway to allow for additional functionality including:
 - Complete integration into ASAP
 - Improvement of mobile and nonroad module
 - Addition of innovative and emerging technology programs

O3 Response Surface Metamodel: Summary

- A new tool that allows for real-time prediction of air quality changes from emissions changes rather than using a more computationally expensive atmospheric chemistry model.
- A statistical "reduced-form" model of a complex air quality model, e.g., CAMx for this pilot study.
- This new tool was developed for ozone in the Eastern US in collaboration with OTAQ for use in the ASAP demo and technical analysis for upcoming OTAQ rules.
- Ongoing work to develop PM and multi-pollutant version based on CMAQ for future use.

BenMAP: Summary

- EPA/OAR next generation environmental benefits analysis program
- GIS based system for
 - creating population level exposure surfaces
 - estimating changes in incidence of a wide variety of health outcomes associated with changes in ambient air pollution
 - valuing changes in incidence of health outcomes
- Used to support EPA/OAR benefits assessments of major rules since 2002