New Science Implementation in CMAQ-Hg: Test over a Continental United States Domain

Che-Jen Lin¹, Pruek Pongprueksa¹, Taruna Vanjani Thomas C. Ho¹, Hsing-wei Chu¹ & Carey Jang²

¹ College of Engineering, Lamar University, Beaumont, TX ²USEPA OAQPS, Research Triangle Park, NC

4th Annual CMAS Models-3 User's Conference

Research Triangle Park, NC September 26, 2005

Acknowledgements

- US Environmental Protection Agency (USEPA)
- Texas Commission on Environmental Quality (TCEQ)
- Gulf Coast Hazardous Substance Research Center
- Simo Pehkonen, National University of Singapore
- Steve Lindberg, Oak Ridge National Laboratory (Retired)
- Daewon Byun, the University of Houston
- Russell Bullock, USEPA ORD
- Thomas Braverman, USEPA OAQPS
- Christian Seigneur, Atmospheric & Environmental Research

Atmospheric Mercury

	Elemental (GEM)	Divalent (RGM, DAM, PHg)		
Primary Source	Emissions	Emission, Products of Hg(0)		
Abundance	> 95% < 5 %			
Phase	Gas	Gas, aqueous, solid		
Water Solubility	Low (0.3 μM)	High (a few mM)		
Henry's Constant	0.11 M/atm	10 ⁴ – 10 ⁷ M/atm		
Lifetime	0.5 - 2 years	Days - Weeks		
Transport	Long Range	Relatively short		
Background Concentration	1~4 ng/m ³	Up to 900 pg/m ³ (RGM) 0.025~0.5 nM (DAM)		

What makes Hg unique?

- Very small concentrations (often in sub-ppt levels) compared to criterion air pollutants
- Its "gaseous" forms have little human health concerns
- Has multiple chemical forms with diverse properties
- Has "its own" chemistry cycle does not affect other air pollutants significantly
- Concurrent atmospheric processes involving multiple pollutants affect its transport and deposition
- Transformation occurs in multiple phases in the atmosphere
- Both dry and wet depositions cause problems
- Analytically challenging to measure
- Cycling in the environment

Modeling Atmospheric Hg

The Emission

- Anthropogenic sources
- Natural sources
- Re-emissions?

The Transport – as determined by the advection and diffusion treatment in air quality models.

The Transformation

- Gaseous phase oxidation & product speciation
- Aqueous phase oxidation, reduction and sorption
- Interfacial transfer scavenging and evaporation

The Deposition

- Dry deposition GEM, RGM, PHg
- Wet deposition Aqueous Hg(II)

CMAQ-Hg Model

CMAQ-Hg (Bullock & Brehme, 2002)

Emission	Anthropogenic (Point & Area)	Veg./re-emission needed			
Gas Chemistry	O ₃ , Cl ₂ , H ₂ O ₂ , and OH, PHg as the oxidation product by OH and O ₃	New kinetics available & speciation need revision			
Aq. Chemistry	Ox: O ₃ , OH, HOCl, and OCl	Speciation controlled			
	Red: HgSO ₃ , Hg(OH) ₂ +hv, HO ₂	Speciation controlled			
Aq. Speciation	SO ₃ ²⁻ , Cl ⁻ , OH ⁻	Major ligands considered but assume constant Cl-			
Aq. Sorption	Sorption of Hg(II) to ECA, bidirectional non-eq. kinetics w/ linear sorption isotherm	High sorption constant, no impact based on current formulation			
Dry Deposition	V _{dep} of HNO ₃ for RGM deposition	No Hg ⁰ deposition. RGM deposition likely too high			
	V _{dep} of I,J modes for PHg deposition	As sulfate deposition			
Wet Deposition	Dissolved and Sorbed Hg(II) _{aq}	By precipitation & aqueous concentration			

Science Issues in CMAQ-Hg

- Impact of emission natural/re-emission unclear.
- Widely varied kinetic data reported for same mechanisms (e.g., gaseous Hg⁰ oxidation by O₃ and OH; aqueous reduction of Hg(II) by sulfite).
- Uncertain reaction product distribution of gaseous oxidation (e.g., RGM or PHg?).
- Extrapolation of laboratory results may not be appropriate (e.g., aqueous reduction of Hg(II) by HO₂, gaseous oxidation of Hg⁰ by OH and O₃).
- Deposition velocity for both GEM and RGM not treated rigorously.
- Revision needed for sorption scheme in the aqueous phase (cloud water).

Sensitivity Cases

- Case 1: CMAQ-Hg as in Bullock & Brehme (2002)
- Case 2: include vegetative/natural emission in mercury emission inventory
- Case 3: incorporate dry deposition schemes for elemental mercury and RGM (as HgCl₂)
- Case 4: speciate mercury oxidation products to reactive gaseous mercury (RGM)
- Case 5: incorporate new aqueous sorption scheme based on new sorption isotherm
- Case 6: combine the modifications of Cases 2-5

Parameter of interest: wet/dry deposition of mercury

Simulation Details

- Modeling periods: January and July 2001
- Meteorology: 2001 USEPA 36-km MM5 fields in CONUS domain
- Vertical structure: model top 10,000 Pa, 25 layers collapsing into 14 layers
- Emission inventory: NEI99 final Version 3, mercury speciation EI based on Walcek et al. (2003); natural / vegetative emission based on Lin et al. (2005)
- Chemistry: CB4 + updated mercury mechanisms (Lin and Pehkonen, 1999; Lin et al., 2005)
- Dry deposition: based on Wesley scheme (1989) with updated formulation for GEM and RGM
- Initial and boundary conditions: assumed typical background concentrations for GEM, RGM and PHg

Anthropogenic Mercury Emission Inventory

Anthropogenic Mercury Emission Total Annual Emission: 142 tons

Hg(0) Emission: 78 tons Hg(II) Emission: 50 tons

Particulate Hg Emission: 14 tons

Based on NEI99 Final Version 3

Natural Mercury Emission Inventory

Annual Natural Emission:
Lower Limit = 31 tons
"Best" Available Estimate = 44 tons
Upper Limit = 136 tons

(Lin et al., 2005)

Anthropogenic vs. Natural*

Mercury Deposition

Dry Deposition (Based on Wesley Scheme)

$$F_{dry} = -V_d \times C_g$$

$$V_d = (R_a + R_b + R_c)^{-1} + V_g$$

$$R_c = \left(\frac{1}{r_{sx} + r_{mx}} + \frac{1}{r_{lux}} + \frac{1}{r_{dc} + r_{clx}} + \frac{1}{r_{ac} + r_{gsx}}\right)^{-1}$$

Wet Deposition

$$F_{wet} = P \times [Hg^{2+}]_{aq,total}$$

Hg V_{dep} Implementation - R_c

Terms	Formulation	Description	Remarks
r _{dc}	100[1 + 1000(G + 10) ⁻¹] (1 + 1000 θ) ⁻¹	- Buoyant convection resistance	
r _{sx}	$r_s D_{H2O}/D_x$, where $r_s = r_i \{1 + [200(G + 0.1)^{-1}]^2\} \{400[T_s(40 - T_s)]^{-1}\}$	- Stomatal resistance for substance x	RGM: $D_{RGM} = 0.086 \text{ cm}^2/\text{s};$ $D_{H2O}/D_{RGM} = 2.53$ GEM: $D_{GEM} = 0.1194 \text{ cm}^2/\text{s};$ $D_{H2O}/D_{GEM} = 1.82$
r _{clx}	$[k_{H}/(10^{5}r_{cIS}) + f_{0}/r_{cIO}]^{-1}$	- Lower canopy resistance	
r _{gsx}	$[k_{H}/(10^{5}r_{gsS}) + f_{0}/r_{gsO}]^{-1}$	- Ground surf. resistance	RGM: $K_H=2.8x10^6 \text{M atm}^{-1} (\text{HgCl}_2)$ $K_H=2.7x10^{12} \text{M atm}^{-1} (\text{HgO})$ $f_0(\text{RGM}) = \textbf{0.1 or 1.0}$
r _{mx}	$(k_H/3000 + 100 f_0)^{-1}$	- Mesophyll resistance	$f_0(RGM) = 0.1 \text{ or } 1.0$
r _{lux}	$r_{lu} (10^{-5} k_H + f_0)^{-1}$	- Leaf cuticular resist.	GEM: $K_H = 0.139 \text{ M atm}^{-1}$, $f_0(GEM) = 10^{-5}$
	$[1/(3r_{lu}) + 10^{-7} k_H + f_0/r_{luO}]^{-1}$	- Dew or rain correction	1 ₀ (OLIVI) = 10.
r _{luS}	100	- Leaf cuticular, SO ₂ (Dew)	
	$[1/5000 + 1/(3r_{lu})]^{-1}$	- Rain correction	
r _{luO}	$[1/3000 + 1/(3r_{lu})]^{-1}$	- Leaf cuticular, O ₃ (Dew)	
	$[1/1000 + 1/(3r_{lu})]^{-1}$	- Rain correction	

Note: r_i , r_{lu} , r_{clS} , r_{clO} , r_{ac} , r_{gsS} , r_{gsO} are parameters depending on land uses and seasons

Hg Dry Deposition Velocity

July 1,2001 0:00:00 Min= 0.02 at (23,94), Max= 2.61 at (56,3)

Simplified Hg Chemistry Scheme

Reaction Kinetics

Reaction	Rate constant	Type	
$Hg^0_{(g)} + O_{3(g)} \longrightarrow RGM/PHg + O_{2(g)}$	$3-75\times10^{-20} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$	Ox	G
$Hg^{0}_{(aq)} + O_{3(aq)} + 2 H^{+} \rightarrow Hg^{2+}_{(aq)} + H_{2}O + O_{2}$	$4.7 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Ox	\mathbf{AQ}
$Hg^{0}_{(g)} + {}^{\bullet}OH_{(g)} \longrightarrow RGM/PHg + Products$	$8.7 \times 10^{-14} \mathrm{cm}^3 \mathrm{molec}^{-1} \mathrm{s}^{-1}$	Ox	G
$Hg^{0}_{(aq)} + {}^{\bullet}OH_{(aq)} \longrightarrow Hg^{2+}_{(aq)} + Products$	$2.0 \times 10^9 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Ox	\mathbf{AQ}
$Hg^{0}_{(aq)} + HOCl_{(aq)} \longrightarrow Hg^{2+}_{(aq)} + Cl^{-} + OH^{-}$	$2.09 \times 10^6 \mathrm{M}^{-1}\mathrm{s}^{-1}$	Ox	\mathbf{AQ}
$Hg^{0}_{(aq)} + OCl_{(aq)}^{-} \xrightarrow{H^{+}} Hg^{2+}_{(aq)} + Cl_{+} + OH_{-}$	$1.99 \times 10^6 \mathrm{M}^{-1}\mathrm{s}^{-1}$	Ox	AQ
$Hg^{0}_{(g)} + H_{2}O_{2(g)} \longrightarrow RGM/PHg + products$	$8.5 \times 10^{-19} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$	Ox	G
$Hg^{0}_{(g)} + Cl_{2(g)} \longrightarrow RGM + products$	$2.6-4.8\times10^{-18}$ cm ³ molec ⁻¹ s ⁻¹	Ox	G
$Hg^{0}_{(g)} + Br_{2(g)} \longrightarrow RGM + products$	$9 \times 10^{-17} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$	Ox	G
$Hg^{0}_{(g)} + Cl_{(g)} \longrightarrow RGM + products$	$1.0 \times 10^{-11} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$	Ox	G
$Hg^{0}_{(g)} + Br_{(g)} \longrightarrow RGM + products$	$3.2 \times 10^{-12} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$	Ox	G
$Hg^0_{(g)} + BrO_{(g)} \longrightarrow RGM + products$	$1.5 \times 10^{-14} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$	Ox	G
$HgSO_{3(aq)} \longrightarrow Hg^{0}_{(aq)} + products$	Texp(31.971-(12595/T))s ⁻¹	Red	AQ
$Hg(OH)_{2(aq)} + UV \longrightarrow Hg^{0}_{(aq)} + products$	$3 \times 10^{-7} \text{ s}^{-1}$, midday 60°N		AO
$Hg(II)_{(aq)} + HO_2^{\bullet}_{(aq)} \rightarrow Hg^{+}_{(aq)} + O_2 + H^{+}$	$1.7 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Red	AQ
$11g(11)(aq) + 11O_2(aq) \rightarrow 11g(aq) + O_2 + 11$	1.//10 141 5	Tttu	110

Hg Sorption Implementation

$$[Hg^{2+}]_{aq,total} = (1 + K_a [APM]_{aq})[Hg_D^{2+}]_{aq}$$

Sources	Xiao & Thomas (2004)	Budinova et al. (2003)	Sanchez-Polo & Rivera-Utrilla (2002)	Manohar et al (2002)	Karabulut et al. (2001)	Seigneur et al. (1998)	Yin et al. 1997
Sorbents	Activated carbon, 0.002 g/mL	Furfural- based carbon, 0.0002 g/mL	Ozonated activated carbon, Φ=500-800 μm, pH _{pzc} : 2.6-8.8, 0.002 g/mL	Clay (Φ=0.096 mm, As= 71.3 m²/g, porosity:=0.39 ml/g, p=1.39 g/ml, cation exchange capacity: 2.3 meq/g, pH _{pac} : 3.4, 0.002 g/mL	Coal (Lignite), 65 mesh ASTM, 1 g/mL	Atmospheric particulate matter, Φ < 62 μm, 20 mg/L	15 Soil types (sand- loam), Φ < 2 mm., 0.01 g/mL
Hg Conc.	Hg(NO ₃) ₂ : 48 - 4173 mM	HgCl ₂ : 10 - 40 mg/L	50 mg/L Hg(II)	25-1000 mg/L Hg(II)	10 - 100 ppm Hg(II)	THg: 1.67 ng/L	Hg(NO ₃) ₂ : 1.0×10 ⁻⁷ ~ 1.1×10 ⁻⁴ M
Solution Conditions	T: 25 °C, pH: 1.97 - 3.90	pH: 2.0 - 5.0	T: 25 °C, pH: 2.0 - 12.0	T: 30 - 60 °C, pH: 4.0 - 8.0	T=25 ± 2 °C, pH: 2.0 - 6.0	pH: 3.1 - 6.1	T=25 ± 2 °C, pH=4.9-6.5. I = 0.001-0.1 M NaNO ₃
Sorption Model ⁽¹⁾	q _{max} : 1.06 - 1.37 mmol g ⁻¹ , K _{ads} : 1.82 - 7.87 L mmol ⁻¹	q _{max} : 134 - 174 mg/g, K _{ads} ⁻¹ : 0.11 - 1.40 mg/L	q _{max} : 38.61 - 62.11 mg/g, K _{ads} : 0.06 - 0.57 L/mg	q _{max} : 46.02 - 70.32 mg/g, K _{ads} : 0.037 - 0.123 l/mg	q _{max} : 2.03 mg/g, K _{adi} -1: 9.81 mg/L		Log K _{ads} : 5.16 - 5.97 L mol ⁻¹ , q _{max} : 3.73 - 12.80 μmol g ⁻¹
Ka, L/g ⁽²⁾	1.93 - 10.78	124 - 1,218	2-11	1.7 - 8.6	0.21	3 - 91	0.54 - 10.26

(1) All the sorption models are based on Langmuir isotherm except Seigneur et al. (1998).

⁽²⁾ The K_a (as shown in Equation 1) values are calculated from the linear range of the Langmuir isotherm using the sorption parameters reported in the sorption models.

ICONs & BCONs

σlayer	0.98	0.93	0.84	0.60	0.30	0.00
HG	1.78	1.77	1.76	1.75	1.74	1.73
(ppmv)	E-07	E-07	E-07	E-07	E-07	E-07
HGIIGAS					6.00	
(ppmv)	E-09	E-09	E-09	E-09	E-09	E-09
APHGI	9.97	9.48	8.98	6.98	4.49	1.49
(µg/m³)	E-06	E-06	E-06	E-06	E-06	E-06
APHGJ	9.97	9.48	8.98	6.98	4.49	1.49
(µg/m³)	E-06	E-06	E-06	E-06	E-06	E-06

Simulation Results (July 2001)

Case 1

(Bullock & Brehme, 2002)

Case 2

(veggie/natural EI)

Case 3

(Dry deposition)

Case 4

(Oxidation products)

Case 5

(Sorption modification)

Case 6

(All combined)

GEM Concentrations

RGM Concentrations

PHg Concentrations

GEM Dry Deposition

RGM Dry Deposition

PHg Dry Deposition

RGM Wet Deposition

PHg Wet Deposition

Mercury Deposition Network

- National network
- Started in 1995 at 13 sites
- Currently 89 active sites
- Monitors wet deposition of Hg and Me-Hg
- Weekly data in precipitation
- Weekly aqueous Hg concentrations
- Operated by Frontier Geosciences

Interpolated Aqueous Concentration Wet Deposition of Hg from MDN Data

January 2001

July 2001

Model Verification – Aqueous Conc.

Model Verification – Wet Deposition

Key Conclusions

- Mercury emission does not significantly change total ambient Hg concentration except near major point sources.
- Photochemical activities enhance mercury deposition.
- Atmospheric deposition (wet and dry) is forced mainly by chemistry except near major point sources.
- Vegetative Hg emission does not contribute significantly to Hg deposition, instead, it only slightly increases the concentration of GEM.
- The speciation of oxidized mercury products (RGM vs. PHg) has a strong effect on the relative concentration of RGM and PHg as well as their deposition intensity.
- Sorption/desorption equilibrium strongly affects the composition of deposited mercury in wet deposition. More experimental data are needed for further implementation.
- The science update development in this study shows improvement over the original CMAQ-Hg model.