New Science Implementation in CMAQ-Hg: Test over a Continental United States Domain #### Che-Jen Lin¹, Pruek Pongprueksa¹, Taruna Vanjani Thomas C. Ho¹, Hsing-wei Chu¹ & Carey Jang² ¹ College of Engineering, Lamar University, Beaumont, TX ²USEPA OAQPS, Research Triangle Park, NC 4th Annual CMAS Models-3 User's Conference Research Triangle Park, NC September 26, 2005 #### Acknowledgements - US Environmental Protection Agency (USEPA) - Texas Commission on Environmental Quality (TCEQ) - Gulf Coast Hazardous Substance Research Center - Simo Pehkonen, National University of Singapore - Steve Lindberg, Oak Ridge National Laboratory (Retired) - Daewon Byun, the University of Houston - Russell Bullock, USEPA ORD - Thomas Braverman, USEPA OAQPS - Christian Seigneur, Atmospheric & Environmental Research ## **Atmospheric Mercury** | | Elemental (GEM) | Divalent
(RGM, DAM, PHg) | | | |-----------------------------|-----------------------|---|--|--| | Primary Source | Emissions | Emission,
Products of Hg(0) | | | | Abundance | > 95% < 5 % | | | | | Phase | Gas | Gas, aqueous, solid | | | | Water Solubility | Low (0.3 μM) | High (a few mM) | | | | Henry's Constant | 0.11 M/atm | 10 ⁴ – 10 ⁷ M/atm | | | | Lifetime | 0.5 - 2 years | Days - Weeks | | | | Transport | Long Range | Relatively short | | | | Background
Concentration | 1~4 ng/m ³ | Up to 900 pg/m ³ (RGM)
0.025~0.5 nM (DAM) | | | #### What makes Hg unique? - Very small concentrations (often in sub-ppt levels) compared to criterion air pollutants - Its "gaseous" forms have little human health concerns - Has multiple chemical forms with diverse properties - Has "its own" chemistry cycle does not affect other air pollutants significantly - Concurrent atmospheric processes involving multiple pollutants affect its transport and deposition - Transformation occurs in multiple phases in the atmosphere - Both dry and wet depositions cause problems - Analytically challenging to measure - Cycling in the environment #### **Modeling Atmospheric Hg** #### The Emission - Anthropogenic sources - Natural sources - Re-emissions? The Transport – as determined by the advection and diffusion treatment in air quality models. #### The Transformation - Gaseous phase oxidation & product speciation - Aqueous phase oxidation, reduction and sorption - Interfacial transfer scavenging and evaporation #### The Deposition - Dry deposition GEM, RGM, PHg - Wet deposition Aqueous Hg(II) # **CMAQ-Hg Model** #### CMAQ-Hg (Bullock & Brehme, 2002) | Emission | Anthropogenic (Point & Area) | Veg./re-emission needed | | | | |-----------------------|--|--|--|--|--| | Gas Chemistry | O ₃ , Cl ₂ , H ₂ O ₂ , and OH, PHg as the oxidation product by OH and O ₃ | New kinetics available & speciation need revision | | | | | Aq. Chemistry | Ox: O ₃ , OH, HOCl, and OCl | Speciation controlled | | | | | | Red: HgSO ₃ , Hg(OH) ₂ +hv, HO ₂ | Speciation controlled | | | | | Aq. Speciation | SO ₃ ²⁻ , Cl ⁻ , OH ⁻ | Major ligands considered but assume constant Cl- | | | | | Aq. Sorption | Sorption of Hg(II) to ECA, bidirectional non-eq. kinetics w/ linear sorption isotherm | High sorption constant, no impact based on current formulation | | | | | Dry Deposition | V _{dep} of HNO ₃ for RGM deposition | No Hg ⁰ deposition. RGM deposition likely too high | | | | | | V _{dep} of I,J modes for PHg deposition | As sulfate deposition | | | | | Wet Deposition | Dissolved and Sorbed Hg(II) _{aq} | By precipitation & aqueous concentration | | | | #### Science Issues in CMAQ-Hg - Impact of emission natural/re-emission unclear. - Widely varied kinetic data reported for same mechanisms (e.g., gaseous Hg⁰ oxidation by O₃ and OH; aqueous reduction of Hg(II) by sulfite). - Uncertain reaction product distribution of gaseous oxidation (e.g., RGM or PHg?). - Extrapolation of laboratory results may not be appropriate (e.g., aqueous reduction of Hg(II) by HO₂, gaseous oxidation of Hg⁰ by OH and O₃). - Deposition velocity for both GEM and RGM not treated rigorously. - Revision needed for sorption scheme in the aqueous phase (cloud water). #### **Sensitivity Cases** - Case 1: CMAQ-Hg as in Bullock & Brehme (2002) - Case 2: include vegetative/natural emission in mercury emission inventory - Case 3: incorporate dry deposition schemes for elemental mercury and RGM (as HgCl₂) - Case 4: speciate mercury oxidation products to reactive gaseous mercury (RGM) - Case 5: incorporate new aqueous sorption scheme based on new sorption isotherm - Case 6: combine the modifications of Cases 2-5 Parameter of interest: wet/dry deposition of mercury #### **Simulation Details** - Modeling periods: January and July 2001 - Meteorology: 2001 USEPA 36-km MM5 fields in CONUS domain - Vertical structure: model top 10,000 Pa, 25 layers collapsing into 14 layers - Emission inventory: NEI99 final Version 3, mercury speciation EI based on Walcek et al. (2003); natural / vegetative emission based on Lin et al. (2005) - Chemistry: CB4 + updated mercury mechanisms (Lin and Pehkonen, 1999; Lin et al., 2005) - Dry deposition: based on Wesley scheme (1989) with updated formulation for GEM and RGM - Initial and boundary conditions: assumed typical background concentrations for GEM, RGM and PHg #### Anthropogenic Mercury Emission Inventory Anthropogenic Mercury Emission Total Annual Emission: 142 tons Hg(0) Emission: 78 tons Hg(II) Emission: 50 tons Particulate Hg Emission: 14 tons Based on NEI99 Final Version 3 #### **Natural Mercury Emission Inventory** Annual Natural Emission: Lower Limit = 31 tons "Best" Available Estimate = 44 tons Upper Limit = 136 tons (Lin et al., 2005) #### Anthropogenic vs. Natural* #### **Mercury Deposition** Dry Deposition (Based on Wesley Scheme) $$F_{dry} = -V_d \times C_g$$ $$V_d = (R_a + R_b + R_c)^{-1} + V_g$$ $$R_c = \left(\frac{1}{r_{sx} + r_{mx}} + \frac{1}{r_{lux}} + \frac{1}{r_{dc} + r_{clx}} + \frac{1}{r_{ac} + r_{gsx}}\right)^{-1}$$ Wet Deposition $$F_{wet} = P \times [Hg^{2+}]_{aq,total}$$ # Hg V_{dep} Implementation - R_c | Terms | Formulation | Description | Remarks | |------------------|--|---|---| | r _{dc} | 100[1 + 1000(G + 10) ⁻¹] (1 + 1000 θ) ⁻¹ | - Buoyant convection resistance | | | r _{sx} | $r_s D_{H2O}/D_x$, where
$r_s = r_i \{1 + [200(G + 0.1)^{-1}]^2\} \{400[T_s(40 - T_s)]^{-1}\}$ | - Stomatal resistance for substance x | RGM: $D_{RGM} = 0.086 \text{ cm}^2/\text{s};$
$D_{H2O}/D_{RGM} = 2.53$
GEM: $D_{GEM} = 0.1194 \text{ cm}^2/\text{s};$
$D_{H2O}/D_{GEM} = 1.82$ | | r _{clx} | $[k_{H}/(10^{5}r_{cIS}) + f_{0}/r_{cIO}]^{-1}$ | - Lower canopy resistance | | | r _{gsx} | $[k_{H}/(10^{5}r_{gsS}) + f_{0}/r_{gsO}]^{-1}$ | - Ground surf. resistance | RGM: $K_H=2.8x10^6 \text{M atm}^{-1} (\text{HgCl}_2)$
$K_H=2.7x10^{12} \text{M atm}^{-1} (\text{HgO})$
$f_0(\text{RGM}) = \textbf{0.1 or 1.0}$ | | r _{mx} | $(k_H/3000 + 100 f_0)^{-1}$ | - Mesophyll resistance | $f_0(RGM) = 0.1 \text{ or } 1.0$ | | r _{lux} | $r_{lu} (10^{-5} k_H + f_0)^{-1}$ | - Leaf cuticular resist. | GEM: $K_H = 0.139 \text{ M atm}^{-1}$, $f_0(GEM) = 10^{-5}$ | | | $[1/(3r_{lu}) + 10^{-7} k_H + f_0/r_{luO}]^{-1}$ | - Dew or rain correction | 1 ₀ (OLIVI) = 10. | | r _{luS} | 100 | - Leaf cuticular, SO ₂ (Dew) | | | | $[1/5000 + 1/(3r_{lu})]^{-1}$ | - Rain correction | | | r _{luO} | $[1/3000 + 1/(3r_{lu})]^{-1}$ | - Leaf cuticular, O ₃ (Dew) | | | | $[1/1000 + 1/(3r_{lu})]^{-1}$ | - Rain correction | | Note: r_i , r_{lu} , r_{clS} , r_{clO} , r_{ac} , r_{gsS} , r_{gsO} are parameters depending on land uses and seasons ### Hg Dry Deposition Velocity July 1,2001 0:00:00 Min= 0.02 at (23,94), Max= 2.61 at (56,3) #### Simplified Hg Chemistry Scheme #### **Reaction Kinetics** | Reaction | Rate constant | Type | | |---|---|------|---------------| | $Hg^0_{(g)} + O_{3(g)} \longrightarrow RGM/PHg + O_{2(g)}$ | $3-75\times10^{-20} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$ | Ox | G | | $Hg^{0}_{(aq)} + O_{3(aq)} + 2 H^{+} \rightarrow Hg^{2+}_{(aq)} + H_{2}O + O_{2}$ | $4.7 \times 10^7 \mathrm{M}^{-1} \mathrm{s}^{-1}$ | Ox | \mathbf{AQ} | | $Hg^{0}_{(g)} + {}^{\bullet}OH_{(g)} \longrightarrow RGM/PHg + Products$ | $8.7 \times 10^{-14} \mathrm{cm}^3 \mathrm{molec}^{-1} \mathrm{s}^{-1}$ | Ox | G | | $Hg^{0}_{(aq)} + {}^{\bullet}OH_{(aq)} \longrightarrow Hg^{2+}_{(aq)} + Products$ | $2.0 \times 10^9 \mathrm{M}^{-1} \mathrm{s}^{-1}$ | Ox | \mathbf{AQ} | | $Hg^{0}_{(aq)} + HOCl_{(aq)} \longrightarrow Hg^{2+}_{(aq)} + Cl^{-} + OH^{-}$ | $2.09 \times 10^6 \mathrm{M}^{-1}\mathrm{s}^{-1}$ | Ox | \mathbf{AQ} | | $Hg^{0}_{(aq)} + OCl_{(aq)}^{-} \xrightarrow{H^{+}} Hg^{2+}_{(aq)} + Cl_{+} + OH_{-}$ | $1.99 \times 10^6 \mathrm{M}^{-1}\mathrm{s}^{-1}$ | Ox | AQ | | $Hg^{0}_{(g)} + H_{2}O_{2(g)} \longrightarrow RGM/PHg + products$ | $8.5 \times 10^{-19} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$ | Ox | G | | $Hg^{0}_{(g)} + Cl_{2(g)} \longrightarrow RGM + products$ | $2.6-4.8\times10^{-18}$ cm ³ molec ⁻¹ s ⁻¹ | Ox | G | | $Hg^{0}_{(g)} + Br_{2(g)} \longrightarrow RGM + products$ | $9 \times 10^{-17} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$ | Ox | G | | $Hg^{0}_{(g)} + Cl_{(g)} \longrightarrow RGM + products$ | $1.0 \times 10^{-11} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$ | Ox | G | | $Hg^{0}_{(g)} + Br_{(g)} \longrightarrow RGM + products$ | $3.2 \times 10^{-12} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$ | Ox | G | | $Hg^0_{(g)} + BrO_{(g)} \longrightarrow RGM + products$ | $1.5 \times 10^{-14} \text{ cm}^3 \text{molec}^{-1} \text{s}^{-1}$ | Ox | G | | $HgSO_{3(aq)} \longrightarrow Hg^{0}_{(aq)} + products$ | Texp(31.971-(12595/T))s ⁻¹ | Red | AQ | | $Hg(OH)_{2(aq)} + UV \longrightarrow Hg^{0}_{(aq)} + products$ | $3 \times 10^{-7} \text{ s}^{-1}$, midday 60°N | | AO | | $Hg(II)_{(aq)} + HO_2^{\bullet}_{(aq)} \rightarrow Hg^{+}_{(aq)} + O_2 + H^{+}$ | $1.7 \times 10^4 \mathrm{M}^{-1} \mathrm{s}^{-1}$ | Red | AQ | | $11g(11)(aq) + 11O_2(aq) \rightarrow 11g(aq) + O_2 + 11$ | 1.//10 141 5 | Tttu | 110 | #### **Hg Sorption Implementation** $$[Hg^{2+}]_{aq,total} = (1 + K_a [APM]_{aq})[Hg_D^{2+}]_{aq}$$ | Sources | Xiao &
Thomas (2004) | Budinova et
al. (2003) | Sanchez-Polo &
Rivera-Utrilla
(2002) | Manohar et al (2002) | Karabulut
et al. (2001) | Seigneur et al.
(1998) | Yin et al. 1997 | |----------------------------------|--|---|--|---|--|---|---| | Sorbents | Activated
carbon, 0.002
g/mL | Furfural-
based carbon,
0.0002 g/mL | Ozonated
activated carbon,
Φ=500-800 μm,
pH _{pzc} : 2.6-8.8,
0.002 g/mL | Clay (Φ=0.096 mm, As= 71.3 m²/g, porosity:=0.39 ml/g, p=1.39 g/ml, cation exchange capacity: 2.3 meq/g, pH _{pac} : 3.4, 0.002 g/mL | Coal
(Lignite), 65
mesh
ASTM, 1
g/mL | Atmospheric
particulate
matter, Φ < 62
μm, 20 mg/L | 15 Soil types (sand-
loam), Φ < 2 mm.,
0.01 g/mL | | Hg Conc. | Hg(NO ₃) ₂ : 48 -
4173 mM | HgCl ₂ : 10 -
40 mg/L | 50 mg/L Hg(II) | 25-1000 mg/L Hg(II) | 10 - 100
ppm Hg(II) | THg: 1.67
ng/L | Hg(NO ₃) ₂ : 1.0×10 ⁻⁷
~ 1.1×10 ⁻⁴ M | | Solution
Conditions | T: 25 °C, pH:
1.97 - 3.90 | pH: 2.0 - 5.0 | T: 25 °C, pH: 2.0
- 12.0 | T: 30 - 60 °C, pH: 4.0 - 8.0 | T=25 ± 2 °C,
pH: 2.0 - 6.0 | pH: 3.1 - 6.1 | T=25 ± 2 °C,
pH=4.9-6.5. I =
0.001-0.1 M NaNO ₃ | | Sorption
Model ⁽¹⁾ | q _{max} : 1.06 - 1.37
mmol g ⁻¹ , K _{ads} :
1.82 - 7.87 L
mmol ⁻¹ | q _{max} : 134 -
174 mg/g,
K _{ads} ⁻¹ : 0.11 -
1.40 mg/L | q _{max} : 38.61 -
62.11 mg/g, K _{ads} :
0.06 - 0.57 L/mg | q _{max} : 46.02 - 70.32 mg/g, K _{ads} : 0.037 - 0.123 l/mg | q _{max} : 2.03
mg/g, K _{adi} -1:
9.81 mg/L | | Log K _{ads} : 5.16 - 5.97
L mol ⁻¹ , q _{max} : 3.73 -
12.80 μmol g ⁻¹ | | Ka, L/g ⁽²⁾ | 1.93 - 10.78 | 124 - 1,218 | 2-11 | 1.7 - 8.6 | 0.21 | 3 - 91 | 0.54 - 10.26 | (1) All the sorption models are based on Langmuir isotherm except Seigneur et al. (1998). ⁽²⁾ The K_a (as shown in Equation 1) values are calculated from the linear range of the Langmuir isotherm using the sorption parameters reported in the sorption models. #### **ICONs & BCONs** | σlayer | 0.98 | 0.93 | 0.84 | 0.60 | 0.30 | 0.00 | |----------------|------|------|------|------|------|------| | HG | 1.78 | 1.77 | 1.76 | 1.75 | 1.74 | 1.73 | | (ppmv) | E-07 | E-07 | E-07 | E-07 | E-07 | E-07 | | HGIIGAS | | | | | 6.00 | | | (ppmv) | E-09 | E-09 | E-09 | E-09 | E-09 | E-09 | | APHGI | 9.97 | 9.48 | 8.98 | 6.98 | 4.49 | 1.49 | | (µg/m³) | E-06 | E-06 | E-06 | E-06 | E-06 | E-06 | | APHGJ | 9.97 | 9.48 | 8.98 | 6.98 | 4.49 | 1.49 | | (µg/m³) | E-06 | E-06 | E-06 | E-06 | E-06 | E-06 | #### Simulation Results (July 2001) Case 1 (Bullock & Brehme, 2002) Case 2 (veggie/natural EI) Case 3 (Dry deposition) Case 4 (Oxidation products) Case 5 (Sorption modification) Case 6 (All combined) #### **GEM Concentrations** #### **RGM Concentrations** #### **PHg Concentrations** #### **GEM Dry Deposition** #### **RGM** Dry Deposition ### PHg Dry Deposition #### **RGM Wet Deposition** #### **PHg Wet Deposition** #### Mercury Deposition Network - National network - Started in 1995 at 13 sites - Currently 89 active sites - Monitors wet deposition of Hg and Me-Hg - Weekly data in precipitation - Weekly aqueous Hg concentrations - Operated by Frontier Geosciences # Interpolated Aqueous Concentration Wet Deposition of Hg from MDN Data January 2001 **July 2001** #### **Model Verification – Aqueous Conc.** #### **Model Verification – Wet Deposition** #### **Key Conclusions** - Mercury emission does not significantly change total ambient Hg concentration except near major point sources. - Photochemical activities enhance mercury deposition. - Atmospheric deposition (wet and dry) is forced mainly by chemistry except near major point sources. - Vegetative Hg emission does not contribute significantly to Hg deposition, instead, it only slightly increases the concentration of GEM. - The speciation of oxidized mercury products (RGM vs. PHg) has a strong effect on the relative concentration of RGM and PHg as well as their deposition intensity. - Sorption/desorption equilibrium strongly affects the composition of deposited mercury in wet deposition. More experimental data are needed for further implementation. - The science update development in this study shows improvement over the original CMAQ-Hg model.