

CHOOSING A COMPILER FOR AQM APPLICATIONS ON LINUX

George Delic *

HiPERiSM Consulting, LLC, Durham, NC
e-mail: george@hiperism.com

Web address: http://www.hiperism.com
Voice (919) 484-9803 Fax (919) 806-2813

1. INTRODUCTION

This is a status report on a project to evaluate
industry standard fortran 90/95 compilers for IA-32
Linux™ commodity platforms when applied to Air
Quality Models (AQM). There are several
motivating factors for such a project:

1) large-scale scientific codes continue their
migration to commodity hardware,

2) Linux™ has emerged as an alternative to
proprietary UNIX operating systems,

3) the number of Fortran compilers to chose
from in the IA-32 market sector has grown,

4) portability issues arise when moving
legacy code into this environment.

In the case of both Air Quality Models, and
Meteorological Models, important additional
considerations include the time to solution and
questions of numerical stability and accuracy of
the solution. Thus it seems that a project such as
this is timely. To substantiate this claim it need
only be noted that, in the case of CMAQ, between
the 4.2.1 and 4.2.2 Linux™ releases, there was a
switch of compilers with no information,
motivation, or discussion of numerical and
performance issues.

Here, as a preliminary step, two simple
benchmarks are used in the evaluation of
compilers before launching into a full-scale AQM
such as CMAQ. This approach has the advantage
of identifying portability issues and compiler
quirks. Also, a controlled empirical study will
quickly lead to understanding which compiler
switches affect performance and accuracy.

2.0 CHOICE OF HARDWARE AND
OPERATING SYSTEM

Results for the wall clock time are compared for
two benchmarks compiled using three different

* Corresponding author address: George Delic,
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill,
NC 27514-0569

Fortran compilers with the Linux™ operating
system and one with Windows 2000 (because the
Linux™ version was not yet installed). For this
project benchmarks were executed in serial mode
on a dual processor Intel™ Pentium III 933MHz
workstation with a 256MB on-processor L2 cache
(this is the Flip Chip PGA version of the Pentium
III). This architecture offers Streaming Single-
Instruction-Multiple-Data Extensions (SSE) to
enable vectorization of loops operating on multiple
elements in a data set with a single operation.
Where compilers specifically enable SSE it has
been tested.

3.0 CHOICE OF COMPILERS

The choice of compilers for Linux™ IA-32
platforms now includes several vendor-supported
products. The importance of this category is that
vendor products have technical support and
undergo continuous development with ports to
new architectures as they arrive in the
marketplace. The four compilers chosen in this
survey are described separately in the following
sections and compiler switches used in the two
benchmarks are also discussed. However, it is
noted here that while all compilers offer a switch to
target the Pentium III, only two (Intel and Portland)
offer the SSE option.

3.1 Absoft

Absoft f77 and f90/f95 are the Fortran
compilers included in the Absoft Pro Fortran™ 8.0
package for Linux™ offered by the Absoft
Corporation (http://www.absoft.com). The f90/f95
version has a Cray front-end and resulted from a
five-year collaboration with Cray Research.

3.2 Intel

The Intel Fortran Compiler version 7.1 targets
both Intel IA-32 and IA-64 (Itanium) architectures,
but only the former has been used in this project

http://www.hiperism.com/

so far. A license for a non-commercial version is
available from the Intel URL at
http://www.developer.intel.com/software/products/
compilers

3.3 Lahey

The Lahey/Fujitsu Fortran 95 compiler
(hereafter Lahey) for Linux™ is available from
Lahey Computer Systems, Inc.,
(http://www.lahey.com). The Express version 5.6
for Microsoft Windows 2000™ was used because
it was available from another project for the same
hardware.

3.4 Portland

The pgf90™ fortran compiler (Linux™
distribution) from the Portland Group,
(http://www.pgroup.com) was used in the CDK 4.0
release where it supports OpenMP, MPI and
OpenMP+MPI parallel applications on HiPERiSM’s
IA-32 Linux™ cluster.

3.5 Portability issues

Portability issues come up when legacy
Fortran code needs to be compiled. In this respect
a compiler that allows extensions to the f90/f95
standard can save time and effort. The two
compilers that offer the widest scope in portability
are those from Absoft and Portland. Compilers
from Lahey and Intel are less forgiving of such
extensions. For example one of the benchmarks
used logical operators such as the IAND, IOR, and
NOT intrinsic functions that are now part of the
Fortran 90 standard and require integer operands.
The older FORTRAN 77 standard .AND., .OR.,
.NOT. for integer operands no longer applies
under Fortran 90 because these operators are
reserved for logical operands. Nevertheless,
different compilers apply different extensions to
the standard and two of the compilers discussed
below (Absoft and Portland) compile the older
FORTRAN 77 standard (with the default Fortran
90 options) without comment. Whereas the Lahey
compiler does now allow the extensions and
reports compiler errors if they are used. On the
other hand the Intel compiler issues warnings but
nevertheless produces an executable that
generates erroneous results. Clearly, caution
should always be applied in porting legacy code
with any compiler.

4.0 CHOICE OF BENCHMARKS

The algorithms used here have been executed
on a wide variety of platforms and are excellent
benchmarks in studying how a compiler and
architecture interact for the types of operation they
use. A fuller discussion of the two benchmarks is
available at the HiPERiSM URL. What follows is
only a brief introduction.

4.1 Kallman Algorithm

The Kallman algorithm computes the
permanent of a (0,1) matrix with high efficiency
using only integer and logical operations and
some of the MIL-STD-1753 bit intrinsic functions
that are now part of Fortran 90/95. There is no
floating point work in the Kallman algorithm. A
fuller discussion of results is given by Delic and
Cash (2000). This algorithm is CPU intensive and
performs a small amount of I/O only at the
beginning and end of each run. Memory
requirements are modest and because of the
small instruction set, the instruction buffer fetch
rates are amongst the smallest we have seen.
This algorithm runs in scalar mode because of a
complex branching structure that inhibits
vectorization. Six cases where used in this
analysis corresponding to data sets with matrix
sizes N=30, 44, 48, 52, 56, 60.

4.2 Stommel Ocean Model Algorithm

The Stommel Ocean Model (SOM) is a legacy
Fortran 77 code with a compute kernel consisting
of a double-nested loop that performs a Jacobi
iteration sweep over a two-dimensional finite
difference grid. The number of iterations is fixed at
100 and, because the data set is regular and the
loop structure is conventional, this code should
present compilers with good prospects for
vectorization. Therefore, as a floating point
algorithm, the SOM is useful in studying
performance scaling with problem size N over the
N x N grid. Six cases where used in this analysis
for data sets with grid dimensions in the range
N=2000 (1000) 7000, corresponding to problem
size scaling from N2=4x106 to 49x106 data points.

http://www.lahey.com/
http://www.lahey.com/
http://www.pgroup.com/
http://www.pgroup.com/

5.0 COMPARING EXECUTION TIMES

The following sections summarize execution
time with four compilers for the Kallman and SOM
algorithms for their respective data sets.

5.1 Timing performance

Whole code execution was measured with the
Linux™ time command. This choice was due in
part to the problem of portable timing procedures
in the different compilers. While a f90
system_clock routine could have been used the
time command introduced an error of
approximately 2% and was therefore deemed to
be of sufficient accuracy for these simple
benchmarks.

5.2 Kallman Algorithm results

For the Kallman algorithm the choice of
compiler switches is summarized in Table 5.1 and
timing results are shown in Table 5.2. Figure 1
shows the ratio of these times to the Absoft
compiler (which reports the smallest execution
time) for the six cases of Table 5.2.

Table 5.1 Compiler command and switches for
the Kallman algorithm

Compiler
and version

Compiler command and
selected switches

Absoft 8.0 f90 –O3 –ffixed
Intel 7.1 ifc –O3 –tpp6 -FI
Lahey 5.6 lf95 –tpp –fix
Portland 4.0 pgf90 –fast

Kallman Integer & Logical Algorithm (PIII 933 MHz)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6

Case

R
at

io
 to

 A
bs

of
t t

im
e

Intel / Absoft
Lahey / Absoft
Portland /Absoft

Fig. 1 Ratio of execution times of three different
compilers to that for the Absoft compiler with the
Kallman algorithm.

Table 5.2 Execution times (seconds) for the
Kallman algorithm with four compilers on the
Pentium III (933 MHz).

N Absoft Intel Lahey Portland
30 0.21 0.36 0.48 0.6
44 40.38 80.19 98.45 135.29
48 6.44 13.15 16.16 22.52
52 23.03 48.20 59.30 83.28
56 197.78 412.83 509.31 712.42
60 12891.58 26734.09 32833.08 45451.38

5.3 Stommel Ocean Model results

For the SOM algorithm the choice of compiler
switches is summarized in Table 5.3 and timing
results are shown in Table 5.4 (without SSE
enabled). Figure 2 shows the times of Table 5.4
and Figure 3 shows the trend in descriptive
statistics for the six problem sizes. As expected
the mean and standard deviation of the execution
time rise. However, the coefficient of variation
(standard deviation divided by the mean) of
execution times within this group of compilers
changes slowly as problem size increases. For the
largest problem size the difference in execution
time for different compilers diminishes.

Table 5.3 Compiler command and switches for
the SOM algorithm

Compiler
and
version

Compiler command
and selected
switches

Effect of
switches

Absoft
8.0

f90 –s –cpu:p6
–O3 –ffixed

Static and PIII
Pro target

Intel
7.1

ifc –O3 –tpp6 –FI

ifc –O3 –xK
–tpp6 –FI

Optimize for
PIII target
Vectorize and
enable SSE

Lahey
5.6

lf95 –tpp -fix

Portland
4.0

pgf90 –fast –Mvect
pgf90 –fast
–Mvect=sse

Vectorize
Enable SSE

6.0 EVALUATION OF SSE RESULTS

Two of the compilers (Intel and Portland) include
specific switches to enable the SSE feature of the
Pentium III architecture. For regular data structure
and vectorizable loops this should produce
enhanced performance on this generation of
processors.

Table 5.4 Execution times (seconds) for the SOM
algorithm with four compilers on the Pentium III
(933 MHz) without SSE enabled.

N Absoft Intel Lahey Portland
2000 50.0 38.8 36.4 41.4
3000 110.5 94.4 87.7 92.7
4000 197.7 159.6 150.3 163.3
5000 305.3 224.3 246.8 253.1
6000 443.4 320.0 332.0 388.5
7000 586.5 427.6 477.9 524.4

SOM Floating Point Algorithm (PIII 933 MHz)

0

100

200

300

400

500

600

700

1 2 3 4 5 6

Case

W
al

l t
im

e
(s

ec
on

ds
)

Absoft
Intel
Lahey
Portland

Fig. 2 Execution times of four different compilers
for the SOM floating point algorithm (without SSE).

SOM Floating Point Algorithm (PIII 933
MHz): Statistics for four compilers

0

100

200

300

400

500

600

1 2 3 4 5 6

Case

W
al

l t
im

e
(s

ec
on

ds
)

Mean

Standard
Deviation
Coefficient of
Variation x 1000

Fig. 3 Execution time statistics for four different
compilers with the SOM floating point algorithm.

The SSE options are enabled as indicated in

Table 5.3 for the SOM floating point algorithm
(note that the SSE option is irrelevant for the
Kallman integer and logical algorithm). Figure 4
summarizes the effect of the SSE for the Intel and
Portland compilers. It should be noted that
whereas the Portland compiler includes vector
instructions with the –Mvect switch alone, the Intel

compiler seems to produce vector instructions on
loops only when the SSE option is enabled. The
results of Figure 4 show that for regular data
structures and vectorizable code with long loops
dramatic performance enhancements are possible
from enabling SSE where it is available.

SOM Floating Point Algorithm (PIII 933 MHz)

0

100

200

300

400

500

600

1 2 3 4 5 6

Case

W
al

l t
im

e
(s

ec
on

ds
)

Intel
Intel (SSE)
Portland
Portland (SSE)

Fig. 4 Execution times of two compilers for the
SOM floating point algorithm without and with
SSE enabled.

7.0 TESTS FOR AIR QUALITY MODELS

The next phase in this project is to evaluate
performance of this group of compilers for the
CMAQ 4.3 release. Variability in performance
results is expected but the details will depend on
the balance of integer, logical, and floating point
operations. Also in this phase the consequences
of compiler switches for numerical precision and
stability will be investigated. In testing CMAQ,
community proposals for which scenarios and
species are of particular interest, are welcome.

8.0 CONCLUSIONS

This report presented performance results of
four fortran compilers in the IA-32 environment.
The variability in performance found was specific
to the two benchmarks selected and represented
two extremes in arithmetic operation types. Real-
world codes have different mixtures of such
operations. Therefore an evaluation of the same
group of compilers for real-world environmental
models is expected to produce different results.

Delic, G.and Cash, G., 2000: The Permanent of
0,1 Matrices and Kallman's Algorithm, Comput.
Phys. Comm., 124, 315-329.

