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1.  INTRODUCTION 
 

This is a status report on a project to evaluate 
industry standard fortran 90/95 compilers for IA-32 
Linux™ commodity platforms when applied to Air 
Quality Models (AQM). There are several 
motivating factors for such a project: 

1) large-scale scientific codes continue their  
migration to commodity hardware, 

2) Linux™ has emerged as an alternative to 
proprietary UNIX operating systems, 

3) the number of Fortran compilers to chose 
from in the IA-32 market sector has grown, 

4) portability issues arise when moving 
legacy code into this environment. 

In the case of both Air Quality Models, and 
Meteorological Models, important additional 
considerations include the time to solution and 
questions of numerical stability and accuracy of 
the solution. Thus it seems that a project such as 
this is timely. To substantiate this claim it need 
only be noted that, in the case of CMAQ, between 
the 4.2.1 and 4.2.2 Linux™ releases,  there was a 
switch of compilers with no information, 
motivation, or discussion of numerical and 
performance issues. 

Here, as a preliminary step, two simple 
benchmarks are used in the evaluation of 
compilers before launching into a full-scale AQM 
such as CMAQ. This approach has the advantage 
of identifying portability issues and compiler 
quirks. Also, a controlled empirical study will 
quickly lead to understanding which compiler 
switches affect performance and accuracy. 
 
2.0 CHOICE OF HARDWARE AND 
OPERATING SYSTEM 
 
Results for the wall clock time are compared for 
two benchmarks compiled using three different 
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Fortran compilers with the Linux™ operating 
system and one with Windows 2000 (because the 
Linux™ version was not yet installed). For this 
project benchmarks were executed in serial mode 
on a dual processor Intel™ Pentium III 933MHz 
workstation with a 256MB on-processor L2 cache 
(this is the Flip Chip PGA version of the Pentium 
III). This architecture offers Streaming Single-
Instruction-Multiple-Data Extensions (SSE) to 
enable vectorization of loops operating on multiple 
elements in a data set with a single operation. 
Where compilers specifically enable SSE it has 
been tested. 
 
3.0 CHOICE OF COMPILERS 
 

The choice of compilers for Linux™ IA-32 
platforms now includes several vendor-supported 
products. The importance of this category is that 
vendor products have technical support and 
undergo continuous development with ports to 
new architectures as they arrive in the 
marketplace. The four compilers chosen in this 
survey are described separately in the following 
sections and compiler switches used in the two 
benchmarks are also discussed. However, it is 
noted here that while all compilers offer a switch to 
target the Pentium III, only two (Intel and Portland) 
offer the SSE option.  
 
3.1 Absoft 
 

Absoft f77 and f90/f95 are the Fortran 
compilers included in the Absoft Pro Fortran™ 8.0 
package for Linux™ offered by the Absoft 
Corporation (http://www.absoft.com). The f90/f95 
version has a Cray front-end and resulted from a 
five-year collaboration with Cray Research. 
 
3.2 Intel 
 

The Intel Fortran Compiler version 7.1 targets 
both Intel IA-32 and IA-64 (Itanium) architectures, 
but only the former has been used in this project 
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so far. A license for a non-commercial version is 
available from the Intel URL at 
http://www.developer.intel.com/software/products/
compilers 
 
3.3 Lahey 
 

The Lahey/Fujitsu Fortran 95 compiler 
(hereafter Lahey) for Linux™ is available from 
Lahey Computer Systems, Inc., 
(http://www.lahey.com). The Express version 5.6 
for Microsoft Windows 2000™ was used because 
it was available from another project for the same 
hardware. 
 
3.4 Portland 
 

The pgf90™ fortran compiler (Linux™ 
distribution) from the Portland Group, 
(http://www.pgroup.com) was used in the CDK 4.0 
release where it supports OpenMP, MPI and 
OpenMP+MPI parallel applications on HiPERiSM’s 
IA-32 Linux™ cluster. 
 
3.5 Portability issues 
 

Portability issues come up when legacy 
Fortran code needs to be compiled. In this respect 
a compiler that allows extensions to the f90/f95 
standard can save time and effort. The two 
compilers that offer the widest scope in portability 
are those from Absoft and Portland. Compilers 
from Lahey and Intel are less forgiving of such 
extensions. For example one of the benchmarks 
used logical operators such as the IAND, IOR, and 
NOT intrinsic functions that are now part of the 
Fortran 90 standard and require integer operands. 
The older FORTRAN 77 standard .AND., .OR., 
.NOT. for integer operands no longer applies 
under Fortran 90 because these operators are 
reserved for logical operands. Nevertheless, 
different compilers apply different extensions to 
the standard and two of the compilers discussed 
below (Absoft and Portland) compile the older 
FORTRAN 77 standard (with the default Fortran 
90 options) without comment. Whereas the Lahey 
compiler does now allow the extensions and 
reports compiler errors if they are used. On the 
other hand the Intel compiler issues warnings but 
nevertheless produces an executable that 
generates erroneous results. Clearly, caution 
should always be applied in porting legacy code 
with any compiler. 
 
 

 
4.0 CHOICE OF BENCHMARKS 
 

The algorithms used here have been executed 
on a wide variety of platforms and are excellent 
benchmarks in studying how a compiler and 
architecture interact for the types of operation they 
use. A fuller discussion of the two benchmarks is 
available at the HiPERiSM URL. What follows is 
only a brief introduction. 
 
4.1 Kallman Algorithm 
 

The Kallman algorithm computes the 
permanent of a (0,1) matrix with high efficiency 
using only integer and logical operations and 
some of the MIL-STD-1753 bit intrinsic functions 
that are now part of Fortran 90/95. There is no 
floating point work in the Kallman algorithm. A 
fuller discussion of results is given by Delic and 
Cash (2000). This algorithm is CPU intensive and 
performs a small amount of I/O only at the 
beginning and end of each run. Memory 
requirements are modest and because of the 
small instruction set, the instruction buffer fetch 
rates are amongst the smallest we have seen. 
This algorithm runs in scalar mode because of a 
complex branching structure that inhibits 
vectorization. Six cases where used in this 
analysis corresponding to data sets with matrix 
sizes N=30, 44, 48, 52, 56, 60. 
 
4.2 Stommel Ocean Model Algorithm 
 

The Stommel Ocean Model (SOM) is a legacy 
Fortran 77 code with a compute kernel consisting 
of a double-nested loop that performs a Jacobi 
iteration sweep over a two-dimensional finite 
difference grid. The number of iterations is fixed at 
100 and, because the data set is regular and the 
loop structure is conventional, this code should 
present compilers with good prospects for 
vectorization. Therefore, as a floating point 
algorithm, the SOM is useful in studying 
performance scaling with problem size N over the 
N x N grid. Six cases where used in this analysis 
for data sets with grid dimensions in the range 
N=2000 (1000) 7000, corresponding to problem 
size scaling from N2=4x106 to 49x106 data points. 
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5.0 COMPARING EXECUTION TIMES 
 

The following sections summarize execution 
time with four compilers for the Kallman and SOM 
algorithms for their respective data sets. 
 
5.1 Timing performance 
 

Whole code execution was measured with the 
Linux™ time command. This choice was due in 
part to the problem of portable timing procedures 
in the different compilers. While a f90 
system_clock routine could have been used the 
time command introduced an error of 
approximately 2% and was therefore deemed to 
be of sufficient accuracy for these simple 
benchmarks. 
 
5.2 Kallman Algorithm results 
 

For the Kallman algorithm the choice of 
compiler switches is summarized in Table 5.1 and 
timing results are shown in Table 5.2. Figure 1 
shows the ratio of these times to the Absoft 
compiler (which reports the smallest execution 
time) for the six cases of Table 5.2. 
 
 

Table 5.1 Compiler command and switches for 
the Kallman algorithm 
 

Compiler 
and version 
 

Compiler command and 
selected switches 

Absoft 8.0 f90 –O3 –ffixed 
Intel 7.1 ifc –O3 –tpp6 -FI 
Lahey 5.6 lf95 –tpp –fix 
Portland 4.0 pgf90 –fast 
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Fig. 1 Ratio of execution times of three different 
compilers to that for the Absoft compiler with the 
Kallman algorithm. 

 
 

Table 5.2 Execution times (seconds) for the 
Kallman algorithm with four compilers on the 
Pentium III (933 MHz). 
 

N Absoft Intel Lahey Portland 
30 0.21 0.36 0.48 0.6
44 40.38 80.19 98.45 135.29
48 6.44 13.15 16.16 22.52
52 23.03 48.20 59.30 83.28
56 197.78 412.83 509.31 712.42
60 12891.58 26734.09 32833.08 45451.38
 
5.3 Stommel Ocean Model results 
 
For the SOM algorithm the choice of compiler 
switches is summarized in Table 5.3 and timing 
results are shown in Table 5.4 (without SSE 
enabled). Figure 2 shows the times of Table 5.4 
and Figure 3 shows the trend in descriptive 
statistics for the six problem sizes. As expected 
the mean and standard deviation of the execution 
time rise. However, the coefficient of variation 
(standard deviation divided by the mean) of 
execution times within this group of compilers 
changes slowly as problem size increases. For the 
largest problem size the difference in execution 
time for different compilers diminishes. 
 
 

Table 5.3 Compiler command and switches for 
the SOM algorithm 
 

Compiler 
and 
version 
 

Compiler command 
and selected 
switches 

Effect of 
switches 

Absoft 
8.0 

f90 –s –cpu:p6 
–O3 –ffixed 

Static and PIII 
Pro target 

Intel 
7.1 

ifc –O3 –tpp6 –FI 
 
ifc –O3 –xK 
–tpp6 –FI 

Optimize for 
PIII target 
Vectorize and 
enable SSE 

Lahey 
5.6 

lf95 –tpp -fix  

Portland 
4.0 

pgf90 –fast  –Mvect 
pgf90 –fast 
–Mvect=sse 

Vectorize 
Enable SSE 

 
6.0 EVALUATION OF SSE RESULTS 
 
Two of the compilers (Intel and Portland) include 
specific switches to enable the SSE feature of the 
Pentium III architecture. For regular data structure 
and vectorizable loops this should produce 
enhanced performance on this generation of 
processors. 



 

 

 

Table 5.4 Execution times (seconds) for the SOM 
algorithm with four compilers on the Pentium III 
(933 MHz) without SSE enabled. 
 

N Absoft Intel Lahey Portland
2000 50.0 38.8 36.4 41.4
3000 110.5 94.4 87.7 92.7
4000 197.7 159.6 150.3 163.3
5000 305.3 224.3 246.8 253.1
6000 443.4 320.0 332.0 388.5
7000 586.5 427.6 477.9 524.4
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Fig. 2 Execution times of four different compilers 
for the SOM floating point algorithm (without SSE). 
 

SOM Floating Point Algorithm (PIII 933 
MHz): Statistics for four compilers
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Fig. 3 Execution time statistics for four different 
compilers with the SOM floating point algorithm. 

 
The SSE options are enabled as indicated in 

Table 5.3 for the SOM floating point algorithm 
(note that the SSE option is irrelevant for the 
Kallman integer and logical algorithm). Figure 4 
summarizes the effect of the SSE for the Intel and 
Portland compilers. It should be noted that 
whereas the Portland compiler includes vector 
instructions with the –Mvect switch alone, the Intel 

compiler seems to produce vector instructions on 
loops only when the SSE option is enabled. The 
results of Figure 4 show that for regular data 
structures and vectorizable code with long loops 
dramatic performance enhancements are possible 
from enabling SSE where it is available. 
 

SOM Floating Point Algorithm (PIII 933 MHz)

0

100

200

300

400

500

600

1 2 3 4 5 6

Case

W
al

l t
im

e 
(s

ec
on

ds
)

Intel
Intel (SSE)
Portland
Portland (SSE)

 
 
Fig. 4 Execution times of two compilers for the 
SOM floating point algorithm without and with 
SSE enabled. 
 
7.0 TESTS FOR AIR QUALITY MODELS 
 

The next phase in this project is to evaluate 
performance of this group of compilers for the 
CMAQ 4.3 release. Variability in performance 
results is expected but the details will depend on 
the balance of integer, logical, and floating point 
operations. Also in this phase the consequences 
of compiler switches for numerical precision and 
stability will be investigated. In testing CMAQ, 
community proposals for which scenarios and 
species are of particular interest, are welcome. 

 
8.0 CONCLUSIONS 
 

This report presented performance results of 
four fortran compilers in the IA-32 environment. 
The variability in performance found was specific 
to the two benchmarks selected and represented 
two extremes in arithmetic operation types. Real-
world codes have different mixtures of such 
operations. Therefore an evaluation of the same 
group of compilers for real-world environmental 
models is expected to produce different results.  
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