Improving Ozone Simulations in the Great Lakes Region: **Sensitivity to Emissions and Chemistry**

Momei Qin^{1,*}, M. Talat Odman¹, Haofei Yu^{1,2}, Yongtao Hu¹, Armistead G. Russell¹, Arastoo Pour-Biazar³, Richard T. McNider³, and Eladio Knipping4

1. Georgia Institute of Technology 2. University of Central Florida 3. University of Alabama at Huntsville 4. Electric Power Research Institute * Now at U.S. Environmental Protection Agency

Background

- o Exceedances of ozone (O3) standards in spite of many years of emissions controls in the Great Lakes Region
- o Complex interactions between meteorology (heavily influenced by the presence of the Great Lakes) and emissions from the surrounding large cities (e.g., Chicago)
- It is challenging to fully capture the O₃ dynamics in the region
- > The Community Multiscale Air Quality (CMAQ) model presented positive biases of O₃ (up to 16 ppb) over the water compared to ferry observations (Cleary et al., 2015)

Methodology

Model configurations

- o CMAQv5.1 (WRFv3.8.1)
- July 2011
- o One-way nested (12 & 4km)
- o Base, 4 sensitivity tests and final simulation
- o Mechanism (base)

Flevated MDA8 O. refers to

- Inline: point sources & BEIS

Table 1 The base/final simulations and four sensitivity tests

El Trans	NO.	Case	Biogenic emissions	Mobile NO _x emissions	Chemica mechanis
A DOME	0	Base	BEIS	100%	CB05
	1	Megan	MEGAN	100%	CB05
N LITTER	2	0.5NO _x	BEIS	50%	CB05
The state of	3	CB6	BEIS	100%	CB6
Fig.1 Modeling domains	4	CB6_megan	MEGAN	100%	CB6
rig.1 Modeling domains	5	Final	MEGAN	70%	CB6

- Cb05e51, with 6th aerosol module
- Emissions (base)
- 2011 NEI (Version 6.2 Platform)

NO.	Case	Biogenic emissions	Mobile NO _x emissions	Chemical mechanism
0	Base	BEIS	100%	CB05
1	Megan	MEGAN	100%	CB05
2	0.5NO _x	BEIS	50%	CB05
3	CB6	BEIS	100%	CB6
4	CB6_megan	MEGAN	100%	CB6
5	Final	MEGAN	70%	CB6

Results and discussions

Base simulation

- MDA8 O₃ above 60 ppb o Higher MDA8 O3 over water than on land
- o Compared to measurements on land
- > In general, MDA8 O3 was overestimated, while elevated MDA8 O3 (>60ppb) was underestimated (Table 2)
- > Higher positive biases for MDA8 O₂ and lower negative biases for elevated MDA8 O₂ at coastal sites (<20km from shoreline) (Table 2)
- O₂ diurnal trend: more biased around noon and in the early morning (Fig. 3)
- > NO, diurnal trend: the biases reached their maxima at about 5:00 and 20:00 CST (Fig.

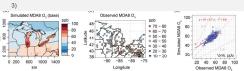


Fig. 2 (a) Simulated MDA8 O3 in the base case, and (b) Observed MDA8 O3 at the AQS sites in the Great Lakes Region. (c) Scatter plot of the simulations against observations

Results and discussions

Table 2 Model performance on MDA8 O₃ without and with a cutoff of 60 ppb in the base and final simulation

		MDA8 O ₃ (no cutoff)						MDA8 O ₃ (>60 ppb)					
Site	Case	# of pairs	MB (ppb)	ME (ppb)	MNB (%)	MNE (%)	r²	# of pairs	MB (ppb)	ME (ppb)	MNB (%)	MNE (%)	r ²
Coastal	Base	1946	6.3	10.5	16.7	23.2	0.4	555	0.0	10.0	0.4	14.6	0.1
(<20km)	Final		4.5	10.0	13.6	22.3	0.3		-2.9	10.7	-3.8	15.4	0.1
Buffer	Base	1559	1.8	7.1	6.8	15.4	0.5	382	-5.6	8.2	-8.0	12.0	0.1
(20-100km)	Final		0.0	7.3	3.6	15.4	0.4		-8.7	10.1	-12.5	14.8	0.1
Inland	Base	5113	2.4	7.5	7.4	15.6	0.4	1633	-2.8	7.5	-4.0	11.1	0.2
(>100km)	Final		0.1	7.4	3.1	15.1	0.4		-5.7	8.8	-8.3	12.9	0.2
	Base	8618	3.2	8.1	9.4	17.3	0.4	2570	-2.6	8.2	-3.6	12.0	0.2
All	Final		1.1	8.0	5.6	16.8	0.4		-5.6	9.4	-8.0	13.7	0.2

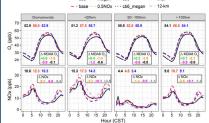
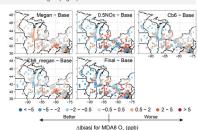



Fig. 3 Diurnal trends of O. (top) and NO. averaged across the domain (Domainwide), at coastal, buffer and inland sites. Monthly means from observations (black), simulations in the base (red) and final (blue) are shown at the top of each panel. Changes in MDA8 O₃ and NO_y in each

Sensitivity runs (Part 2)

- 50% reduction in emissions from mobile sources (Continued)
- A distinct impact on peak O3 concentrations, particularly in buffer/inland areas (containing more rural sites: Fig. 3)
- > Better agreement of simulated NOx with the observations over the period from 22:00 to 7:00 CST (Fig. 3)
- CB6 instead of CB05
- > The difference reached its maximum (~ 4 ppb) over southern Lake Michigan (Fig. 4)

Sensitivity runs (Part 1) MEGAN instead of BEIS

- - Higher emissions with spatial differences in some locations
 - > Little changes (+ 1 ppb) over a large portion of the domain for MDA8 O₃ (Fig. 4)
- 50% reduction in emissions from mobile sources
- ➤ Domain-wide decrease for MDA8 O₃ (1-4ppb; Fig. 4)
- Decreases in high biases for MDA8 O₃, e.g. along the lakes (Fig. 5)
- More biased in locations where MDA8 O. was biased low in the base case, which is also the case for elevated MDA8 O. (Fig. 5).

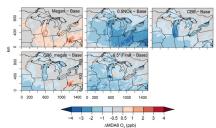


Fig. 4 Changes in MDA8 O₂ for each sensitivity run with respect to the base case. Note that the bottom right panel displays half of the changes in the final

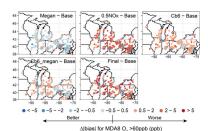


Fig. 5 Changes in absolute mean bias (MB) for MDA8 O3, without (left) and with a cutoff of 60ppb (right) in each sensitivity run compared to the

Results and discussions

Sensitivity runs (Part 3)

- o CB6 instead of CB05 (Continued)
- > Changes in biases of the simulation with CB6 compared to the base case were mixed across the domain, with worse performance for elevated MDA8 O₃ (Fig. 4)
- Similar to the effect of reducing NO, emissions while less significant (Fig. 5)
- o CB6 & MEGAN instead of CB05 & BEIS
- > 02 on land was mostly unchanged compared to the base case

Final simulation

- Compared to the base case
 - > Significant decrease of O3, i.e., ~10 ppb over southern Lake Michigan, along with 4-6 ppb in a large part of the southern domain (Fig. 4)
 - > ~60% of the sites within the domain showed improvements in simulated MDA8 O. and NO_v, except low biases being larger for elevated MDA8 O₃ (Fig. 5)
 - > Overall MB decreased from 3.2 to 1.1 ppb for MDA8 O₂, while underestimation of elevated MDA8 O₃ remained (-5.6 ppb compared to -2.6 ppb)

Conclusions

- o The base simulation overestimated MDA8 O3 in the Great Lakes Region (e.g., by ~6 ppb at coastal sites) while elevated MDA8 O3 (i.e., >60ppb) was biased low
- o Using CB6 or 50% reduction of NO, emissions from mobile sources led to substantial domain-wide decreases in O₃ from the base case (improvements of MDA8 O3 along the Lake Michigan shoreline, but elevated MDA8 O₃ was more biased)
- Using MEGAN instead of BEIS had minor impacts on O₂
- o Using CB6 combined with MEGAN and a 30% reduction of mobile NO_x emissions led to the best performance of MDA8 O₃ and NO_x as well (not the case for elevated MDA8 O₃)

Acknowledgements

This research was funded by the Electric Power Research Institute grant number 10005953 and the National Aeronautics and Space Administration (NASA) Applied Sciences Program grant number NNX16AQ29G.

References

Cleary, P., Fuhrman, N., Schulz, L., Schafer, J., Fillingham, J., Bootsma, H., McQueen, J., Tang, Y., Langel, T., McKeen, S., 2015. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts. Atmospheric Chemistry and Physics 15, 5109-5122.