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1. INTRODUCTION 4. MACHINE LEARNING ALGORITHM 6. NEXT STEPS

 The area of focus is Lake Erie, the shallowest, warmest, and most biologically active Random Forest (RF) Methodology: Simplified Random Forest Diagram * This project will be continued as part of
of the Great Lakes. The lake provides drinking water for 12 million people in the U.S. e« Random subsets of model variables are selected at Al Dt Feng Chang’s PhD dissertation in
and Canada. Agriculture, tourism, commercial fishing, and recreational activities are a each step and used to create decision trees (Fig. 4). Environmental Engineering. A social science
few of the ecosystem services that Lake Erie provides but excessive algal growth poses The optimal number of variables to consider for the oot [rodomseez]  [Ramdomswbers]  [mamgomsorera]  [mamgom sopeern component will be added as part of future
threats to the ecosystem and human health. (US Environmental Protection Agency, root node is calculated by the square root of the - oo e . . work.
2018)' . . amount of explanatory variables. {/\ E{}& C{{?x N A more detailed understanding between the
* Inthis st.udy v.ve aim to demonst.rate how modeled and observed varl.ables can bg * There are around 250 explanatory variables, connection of chlor-a and the top
used to |dgntlfy algal blooms using chlorophyll-a (chlor-a) concentrations as proxies therefore, the number of variables tried at each split fg h . environmental variables selected by random
for the period 2002-2012. | . | Is 16. Fig. 4: Schematic diagram of the random forest model. forest needs to be established.
* From 2002-2012 the chlor-a level in the western basin has averaged at a eutrophic * Each tree gives a classification and saves the trees :i‘::lae?:n:‘i(:;zt:;:t?rt\:::(re\'o fg:i::if;lv:::::astﬁaadrzgl:;ir;fsﬂt; ;Zrd"ezfsei;:f"ow _ _
level while the central basin has been mesotrophic and the eastern basin oligotrophic votes, the forest chooses the classification having ) Regre.ssmn mc?cels an.d other machine
(Forage Task Group, 2012). the most votes over all the other trees and takes the ~ ® Raw chlor-a data was used in the RF model. learning algorithms will be explored to
average of the output by different trees. » No distribution assumption was applied. evaluate and compare the results of random

forest to test for similarities.

5. TOP PREDICTORS AND EFFECTS ON chlor-a + The methods applied to the chlor-a data wil

2. SAMPLE LOCATIONS, DATA, AND WATERSHEDS

 chlor-a data was collected by Geographical Map of Lake Eri s
. . fees | o7\ % be tested and applied to predict dissolved
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* Only US wate rShEdS and Sample IOcathnS Fig. 2: Chlorophyll-a (ug/L) plotted by year. %IncMSE 1st layer nitrate nitrogen ;su 7 E . & Y
were used for this Study. A chlor-a measurement of 175 ug/L was removed from the model Fig. 5: Chlorophyll-a variable importance plot. L1_ANO3 (WS) kg/ha application rate EPIC 2 & - g7
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 Each model variable was lagged for 5 days resulting in more than 250 predictor variables. chlor-a values. 2 IOEUER] VR EI D Gl Group Website: http://airmg.uconn.edu.
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