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1. INTRODUCTION
• The area of focus is Lake Erie, the shallowest, warmest, and most biologically active

of the Great Lakes. The lake provides drinking water for 12 million people in the U.S. 
and Canada. Agriculture, tourism, commercial fishing, and recreational activities are a 
few of the ecosystem services that Lake Erie provides but excessive algal growth poses 
threats to the ecosystem and human health. (US Environmental Protection Agency, 
2018). 

• In this study we aim to demonstrate how modeled and observed variables can be 
used to identify algal blooms using chlorophyll-α (chlor-α) concentrations as proxies 
for the period 2002-2012. 

• From 2002-2012 the chlor-α level in the western basin has averaged at a eutrophic 
level while the central basin has been mesotrophic and the eastern basin oligotrophic 
(Forage Task Group, 2012). 

• This project will be continued as part of 
Feng Chang’s PhD dissertation in 
Environmental Engineering. A social science 
component will be added as part of future 
work. 

• A more detailed understanding between the 
connection of chlor-α and the top 
environmental variables selected by random 
forest needs to be established.  

• Regression models and other machine 
learning algorithms will be explored to 
evaluate and compare the results of random 
forest to test for similarities.   

• The methods applied to the chlor-α data will 
be tested and applied to predict dissolved 
oxygen levels, total nitrogen, and total 
phosphorus data sets in Lake Erie for the 
years 2002- 2012 with the data provided by 
the LEC and GLNPO. 
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2. SAMPLE LOCATIONS, DATA, AND WATERSHEDS

Fig. 1: Chlorophyll-α sample stations, and surrounding watershed outlets (in red). 
Bars delineate western, central and eastern basin sub-boundaries.   

Geographical Map of Lake Erie  
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• Consistent inputs of coupled CMAQ-EPIC data 
(Bash, J. O., E. J. Cooter, et al., 2013) were used 
alongside WRF and VIC data (Fig. 3). 

• Environmental predictors allow understanding 
of science from source to lake and improve the 
ability to identify and characterize associations. 

• Point model variables (Point) were obtained 
from pairing each sample station to the closest 
gridded model point.

• Watershed model variables (WS) were created 
from aggregating gridded model points over the 
watershed area related to each sample station. 

3. MODEL DATA

Fig. 3: Flowchart of model data indicates linked directionality of 
interactions between modeling systems. 

Model Data Interactions with Lake Water

• chlor-α data was collected by 
the Lake Erie Committee (LEC) 
Forage Task Group with stations 
indicated in green, and the 
Great Lakes National Program 
Office (GLNPO) indicated in 
white (Fig. 1). 

• From 2002-2012, samples were 
taken every two weeks from 
beginning of April to end of 
October.

Fig. 2: Chlorophyll-α (ug/L) plotted by year. 
A chlor-α measurement of 175 ug/L was removed from the model 
due to it being an extreme outlier.  

Value Excluded

• High chlor-α measurements were identified: a 
measurement of 80 ug/L and 62 ug/L 
remained in the data to increase predictability 
of high chlor-α concentrations (Fig. 2).  

• Watersheds were delineated from a HUC 8 
scale to determine the drainage area into each 
sample location. 

• Only US watersheds and sample locations 
were used for this study. 

Random Forest (RF) Methodology: 
• Random subsets of model variables are selected at 

each step and used to create decision trees (Fig. 4). 
The optimal number of variables to consider for the 
root node is calculated by the square root of the 
amount of explanatory variables.

• There are around 250 explanatory variables, 
therefore, the number of variables tried at each split 
is 16. 

4. MACHINE LEARNING ALGORITHM

5. TOP PREDICTORS AND EFFECTS ON chlor-α

• Each tree gives a classification and saves the trees 
votes, the forest chooses the classification having 
the most votes over all the other trees and takes the 
average of the output by different trees. 

Fig. 4: Schematic diagram of the random forest model. 
Squares indicate root node. Side arrows indicate amount of splits per node. Hollow 
circles indicate continued node variable runs. Shaded circles indicate decision.   

Simplified Random Forest Diagram  

Top Chlorophyll-α Predictors  

Fig. 5: Chlorophyll-α variable importance plot. 
Number after each variable is the number of 
lagged days. Point is a grid point model data. WS 
is an aggregated model data in the watershed.  

Random Forest Out-Of-Sample Prediction of Chlorophyll-α (ug/L)

Fig. 6: Prediction of chlor-α plotted by actual chlor-α samples (ug/L) through 
random forest. Shown are RMSE and R2. Model underpredicts extreme 
chlor-α values. 

• The out-of-sample cross 
validation technique 
applied for the 
prediction of chlor-α is 
10-fold cross validation, 
repeated 5 times. The 
overall RF model does a 
good job predicting  
chlor-α but under-
predicts chlor-α
concentrations greater 
than 30 μg/L (Fig. 6). 

Partial Dependence Plots  

Fig. 7: Partial dependence plots indicating how 
chlorophyll-α changes (y-axis) as a consequence of an 
exploratory variable (x-axis).  
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• Raw chlor-α data was used in the RF model. 
• No distribution assumption was applied.

Top Predictors                        Units                        Definition Model

Taverage (Point, WS) °C
average maximum and 

minimum air temperature WRF

Dry_Reduced_ND (Point, WS) kg/ha dry deposited reduced N CMAQ

ET_mm (Point) mm evapotranspiration VIC

Windspeed (Point) m/s wind speed WRF

Water_Temp_C (Point) °C water temperature VIC

L2_AMP (WS) kg/ha
2nd layer mineral phosphorus 

application rate EPIC

L2_AOP (WS) kg/ha
2nd layer organic phosphorus 

application rate EPIC

Dry_Oxidized_ND (Point) kg/ha dry deposited oxidized N CMAQ

L1_AMP (WS) kg/ha
1st layer mineral phosphorus 

applicate rate EPIC

Q_cfs (WS) cfs water flow VIC

Q (WS) mm runoff EPIC

SM1_mm (Point) mm level 1 soil moisture at outlet VIC

DRNP (WS) kg/ha
soluble phosphorus loss 
through drainage system EPIC

L2_AON (WS) kg/ha
2nd layer organic nitrogen 

application rate EPIC

L1_ANO3 (WS) kg/ha
1st layer nitrate nitrogen 

application rate EPIC

R_humidity (Point) relative humidity WRF

Radiation (Point) W/m2 radiation WRF

Table 1: Definition for top predictors of chlorophyll-α listed in Fig. 5.  

Taverage_Point_1_°C Dry_Reduced_ND_WS_2_kg/ha

ET_3_mm Windspeed_Point_4_m/s

Dry_Reduced_ND_Point_3_kg/ha L2_AMP_WS_4_kg/ha

SM1_1_mm Q_cfs

Q_WS_3_mm DRNP_WS_5_kg/ha

Radiation_Point_1_W/m2 R_humidity_Point_1

Chlorophyll-α (ug/L) by Year (2002 – 2012)  

• Each model variable was lagged for 5 days resulting in more than 250 predictor variables.

http://airmg.uconn.edu/
https://www.epa.gov/sites/production/files/2018-03/documents/us_dap_final_march_1.pdf
https://www.epa.gov/aboutepa/about-great-lakes-national-program-office-glnpo

