
Presented at the 17th Annual CMAS Conference, Chapel Hill, NC, October 22-24, 2018

1

CMAQ 5.2.1 PARALLEL PERFORMANCE WITH MPI AND OPENMP**

George Delic*
HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA

1. INTRODUCTION

This presentation reports on implementation of

the parallel sparse matrix solver, FSparse [1], in
the Chemistry Transport Model (CTM) in CMAQ.
In this report performance results of the original
EPA [2] and FSparse versions are presented for
the GEAR version of the CTM. This release is v6.3
and is a major redesign. It is applicable in CMAQ
with either the Rosenbrock (ROS3) or SMV Gear
(GEAR) algorithms in the CTM. In FSparse
different blocks of cells are distributed to separate
threads in the parallel thread team.

2. TEST BED ENVIRONMENT

2.1 Hardware

The hardware systems chosen were the
platforms at HiPERiSM Consulting, LLC, shown in
Table 2.1. Nodes 20 and 21 host two Intel E5v3
CPUs with 16 cores and each node has four Intel
Phi co-processor many integrated core (MIC)
cards [3] with 60 and 59 cores, respectively.
These are the base nodes of a heterogeneous
cluster that includes a HP blade server [4] hosting
nodes 27 to 34 with dual 4-core Intel E5640 CPUs.
The total core count of this cluster is 128 with ~2
Tflops (peak) in single precision. For the standard
U.S. EPA version the MPI executions are
launched across multiple combination of these
nodes. This cluster allows for comparison of the
FSparse hybrid (MPI + OpenMP) parallel versions
of CMAQ with the original EPA version.

2.2 Compilers

Results reported here implemented the Intel
Parallel Studio® suite (release 17.6, [3]) and
Portland Group compiler (release 18.1, [5]) with
compiler options for a heterogeneous cluster. In
the Portland case, utilization of an Intel wrapper
enabled linking to the Intel MPI library.

*Corresponding author: George Delic,

george@hiperism.com.

** Dedicated to the memory of Jeff Young who

provided invaluable advice over several decades.

2.3 Episode studied

This report used the benchmark test data
available in the CMAQ 5.2.1 download for a single
day (24 hour) episode. This episode was for July
1st, 2011, using the cb6r3_ae6_aq mechanism
with 149 active species and 329 reactions. For
day/night chemistry this results in 1338/1290 non-
zero entries in the Jacobian matrix. The episode
was run for a full 24 hour scenario on a 80 X 100
California domain at 12 Km grid spacing and 35
vertical layers for a total of 280,000 grid cells. In
this report a variable number of MPI processes
(NP) were used in both CTM versions with 8, 12,
and 16 threads (OMP) in the OpenMP case.

Table 2.1. CPU platforms at HiPERiSM Consulting, LLC

Platform Node20-21
(each node)

Node27-34
(each node)

Operating system OpenSuSE 13.2 OpenSuSE 42.3

Processor Intel™ x86-64
(E5-2698v3)

Intel™ x86-64
(E5640)

Coprocessor 4 x Intel Phi
7120/5120

NA

Peak Gflops / CPU
(SP/DP)

~589 (SP) ~ 43 (DP)

Power
consumption

135 Watts 80 Watts

Cores per
processor

16 4

Power per core 8.44 Watts 20 Watts

Processor count 2 2

Total core count 32 8

Clock 2.3 GHz 2.67 GHz

Bandwidth 68 GB/sec 25.6 GB/sec

Bus speed 2133 MHz 2933 MHz

L1 cache 16x32 KB 4x32 KB

L2 cache 16x256 KB 4x256 KB

L3 cache 40 MB 12 MB

In the following two performance metrics are

introduced to assess parallel performance in the
MPI and OpenMP modified code:

(a) Speedup is the gain in runtime over the
standard U.S. EPA version,

(b) Scaling is the gain in runtime with MPI
process or thread counts larger than 1,

mailto:george@hiperism.com

Presented at the 17th Annual CMAS Conference, Chapel Hill, NC, October 22-24, 2018

2

relative to the result for a single MPI
process or thread on the host CPU.

2.4 Interconnect fabric

Results reported here used this configuration:

1. Homogeneous cluster consisting of

node20 & 21 connected via a 10GigE
switch.

2. Heterogeneous cluster consisting of node
20 & 21 and the HP blade. The blade
chassis has an internal switch connecting
node27-34 and uplinks to the 10GigE
switch to join all nodes together.

For MPI traffic in either cluster mode

bandwidth is approximately 10G bits/sec. A
pending upgrade to an Infiniband (IB) fabric will
raise bandwidth to a (theoretical) limit of 40G
bits/sec.

3. RESULTS FOR TWO CMAQ MODELS

3.1 Performance profile of CMAQ

This section repeats the profile results of the
standard CMAQ 5.2.1 distribution in the testbed
environment identified in Section 2. The
optimization level with the Intel compiler was “-O2”
because higher optimizations caused
segmentation faults at runtime. This could have
been caused by (as yet) unresolved code bugs in
CMAQ, or the Intel compiler itself. Since the
previous report, several compiler bugs were
corrected, but not all have been resolved to-date,
(as with some issues within CMAQ itself). In
addition, several issues in the thread parallel
version of CMAQ were corrected.

For a profile of where time is consumed Fig.
3.1 compares the fraction of total wall clock time
expended in the dominant science processes in
CMAQ. The CHEM process is the Gear (GEAR)
version of the CTM. The EPA version is compared
with the FSparse threaded version for 8, 12, and
16 OpenMP threads, as identified in the legend.
As the fraction of time in CHEM decreases the
fraction of time in the other science processes
increases.

Fig 3.1: Fraction of wall clock time (percent) by science
process for the FSparse GEAR version of CMAQ for
NP=1 and OpenMP thread counts of 8, 12, and 16.

3.2 Intel compiler MPI performance

For the case of the Intel compiler Table 3.1
shows wall clock time, MPI scaling, and parallel
efficiency for the EPA GEAR CTM solver, with
various values of NP in the range 1 to 64 on nodes
20 and 21 (Table 2.1). These two nodes form a
homogeneous sub-cluster consisting of the two
fastest nodes. Note that the MPI parallel efficiency
declines to 49% with NP=64. This loss in parallel
efficiency is due to the diminished work load per
MPI process with a domain of 280,000 cells.
Partitioning amongst the available number of MPI
processes (after division into blocks of 50 cells)
gives 280,000/50 = 5600 blocks for NP = 1, and
5600 / NP thereafter, when NP > 1.

Table 3.1. MPI wall clock time (seconds), scaling
(relative to NP=1), and MPI parallel efficiency for the
U.S. EPA version of CMAQ with the GEAR solver using
the Intel compiler on nodes 20 and 21.

NPROW
X

NPCOL

GEAR solver algorithm

Wall clock
time

MPI scaling
MPI

efficiency

1 20066 1.0 1.00

2x2=4 5272 3.8 0.95

4x2=8 2813 7.1 0.89

4x4=16 1612 12.4 0.78

8x4=32 1001 20.0 0.63

8x8=64 645 31.1 0.49

Results with the Portland compiler are limited

for the U.S. EPA version of CMAQ because of a
runtime failure due to a compiler bug that fails to
pass bounds on an array by reference to a
subroutine.

Presented at the 17th Annual CMAS Conference, Chapel Hill, NC, October 22-24, 2018

3

4. RESULTS FOR THE OpenMP MODEL

4.1 FSparse GEAR speedup versus EPA

In FSparse an OpenMP modification was
implemented in the standard CMAQ version of the
CTM procedure since the dominant amount of
time is expended there for the GEAR solver.
Performance results using the Intel compiler are
presented in this section.

Fig. 4.1 shows wall clock time (in seconds) for
various combinations of MPI processes for EPA
and FSparse version of CMAQ on the
heterogeneous cluster. Due to the core count limit
on each blade, the use of only 8 OpenMP threads
was the default. Fig. 4.2 shows the corresponding
speedup of the OpenMP version over the EPA
release. In both cases the horizontal axis shows
the number of MPI processes, and the multiple
values are for differing combinations of
participating nodes of the cluster. Variability for
any fixed value of NP is determined by how many
processes are resident on the fastest nodes (20
and 21), versus the number on the slower nodes
(27 to 34).

Fig. 4.1 Wall clock time (seconds) for the GEAR solver
in the standard U.S. EPA and the 8 thread OpenMP
versions of CMAQ for NP=1 to 16 using the Intel
compiler for various combinations of nodes.

The two examples where the EPA version is
faster correspond to MPI processes divided
between node20 and 21 of the homogeneous
cluster. In this case MPI communication is
dominantly through memory.

Fig. 4.3 shows thread speed up over the U.S.
EPA times for 288 calls to the CTM with NP=1 MPI
processes. Note the 1.5 times performance boost
with 16 threads compared to the 8 thread result.

Fig. 4.2 Corresponding to Fig. 4.1 this shows OpenMP
speedup with 8 threads for the GEAR solver in the
thread parallel version over the standard U.S. EPA
model using the Intel compiler for various combinations
of nodes.

Fig. 4.3 Parallel thread speedup over the standard U.S.
EPA model using the Intel compiler in 288 calls to
CHEM with GEAR solver for 8, 12 and 16 threads, for
NP=1 MPI process in the 24 hour episode.

4.2 MPI parallel efficiency

Another metric of performance is parallel
efficiency. In the MPI case this is defined as:

Scaling(n) = time (NP=1) / time (NP=n)
Efficiency(n)= Scaling(n) / n

This was introduced in the last column of

Table 3.1 for the original EPA version of CMAQ on
the homogeneous cluster of node20 and 21.

Intel trace tools allow instrumentation that
measures the fraction of run time expended in MPI
message passing versus computation. In the latter
case trace instrumentation also separates scalar

Presented at the 17th Annual CMAS Conference, Chapel Hill, NC, October 22-24, 2018

4

and thread parallel computation fractions. Fig. 4.4
shows this summary for the FSparse version of
CMAQ. The dominant fraction is the time spent in
MPI message passing at larger NP values. The
exceptions are for cases when MPI processes
reside on the fastest nodes where MPI
communication is predominantly via on-node
memory, and not the interconnect fabric.

Fig. 4.5 shows MPI scaling for EPA and
FSparse versions of CMAQ. The variability could
be a consequence of either (a) the 10GigE
interconnect between nodes (see discussion in
Section 2.4), or (b) slower processors on the blade
servers. Nevertheless the OpenMP version
delivers enhanced scaling. In all cases (with one
exception) the FSparse version shows greater MPI
speedup.

Fig 4.6 shows a regression plot of fraction of
run time spent (percent) in OpenMP and scalar
computation regions versus the fraction (percent)
in MPI communication. This demonstrates three
features:

 The fraction of time in MPI communication
increases as the fraction of time in
computation decreases

 The scalar computation fraction dominates
whenever the MPI communication fraction
is greater than 12%

 The OpenMP computation fraction
dominates when the MPI communication
fraction is less than 12%

Fig. 4.4 For the 8 thread FSparse version of CMAQ this
compares the fraction of total time (percent) spent in
MPI message passing, OpenMP computation region,
and scalar computation region with the Intel compiler for
various combinations of nodes.

Fig. 4.5. MPI scaling versus number of processes for
EPA and 8 thread FSparse versions of CMAQ of the
GEAR solver with the Intel compiler for various
combinations of nodes.

Fig. 4.6. For the 8 thread FSparse version of CMAQ this
shows the percent of total time spent in the OpenMP
and scalar regions (vertical) verses that in MPI
communication (horizontal) with the Intel compiler for
various combinations of nodes.

The negative regression trend in Fig. 4.6 for

both OpenMP and scalar computation fractions is
the result of the decreasing domain size per MPI
process (as discussed in Section 3.2).

4.3 Portland versus Intel Compiler

Table 4.1 lists wall clock time for CMAQ in the
FSparse OpenMP version using 8 threads with the
number, NP, of MPI processes shown in the first
column. Results of Intel and Portland compilers
are compared.

Presented at the 17th Annual CMAS Conference, Chapel Hill, NC, October 22-24, 2018

5

Table 4.1. MPI wall clock time (seconds) on the
homogeneous cluster for the 8 thread FSparse version
of CMAQ with the GEAR solver using the Intel and
Portland compilers.

NPROW
X

NPCOL
=NP

GEAR solver algorithm (wall clock time)

Intel Portland
Portland /

Intel

1 20059 18110 0.90

2x2=4 5272 5920 1.12

4x2=8 2813 3991 1.42

5. SUMMARY OF KEY POINTS

5.1 MPI communication

 MPI communication time tends to compete
with, or exceed, computation time.

 MPI scaling increases with process count

 Corresponding to this MPI parallel
efficiency decreases

5.2 Computation

 CHEM is by far the dominant science
process in CMAQ computation time

 Scalar computation time dominates, or
competes with, OpenMP computation time

 The scalar computation fraction (of total
time) dominates whenever the MPI
communication fraction is greater than
12%

 The OpenMP computation fraction
dominates when the MPI communication
fraction is less than 12%

6. NUMERICAL ISSUES

6.1 Comparing concentration values

Any discrepancy between predictions of the
JSparse [2] and FSparse [1] algorithms in the two
methods is explained by the way precision is
treated in each. The CTM solver uses double
precision arithmetic but accepts some input data
from single precision variables (temperature,
pressure, photolysis rates, reaction rates, etc.).
Therefore all expressions in FSparse are
performed in double precision. The acid test is to
compare the computed concentration values for
selected species as predicted by the EPA (using
JSparse) and the thread parallel version (using
FSparse).

Concentration values for 11 selected species
(O3, NOx, etc) were compared for the entire

domain and all 24 time steps. Examples of such a
comparison are shown in Figs. 6.1 to 6.4, where
the absolute error is shown as the difference in
predicted concentrations. To within the tolerances
required in GEAR (ATOL=1.0e-09, RTOL=1.0E-
03), agreement was observed for both Intel and
Portland compilers.

Fig 6.1: Intel compiler results for the FSparse GEAR
solver of CMAQ with 8 OpenMP threads. This shows
the O3 species concentration absolute error (scattered
points) and concentration value (solid line) for 8000
values in layer 1 of the domain. The ranking is in
increasing concentration value from left to right.

Fig 6.2: Portland compiler results for the FSparse GEAR
solver of CMAQ with 8 OpenMP threads. This shows
the O3 species concentration absolute error (scattered
points) and concentration value (solid line) for 8000
values in layer 1 of the domain. The ranking is in
increasing concentration value from left to right.

Presented at the 17th Annual CMAS Conference, Chapel Hill, NC, October 22-24, 2018

6

Fig 6.3: Intel compiler results for the FSparse GEAR
solver of CMAQ with 8 OpenMP threads. This shows
the NO3 species concentration absolute error (scattered
points) and concentration value (solid line) for 8000
values in layer 1 of the domain. The ranking is in
increasing concentration value from left to right.

Fig 6.4: Portland compiler results for the FSparse GEAR
solver of CMAQ with 8 OpenMP threads. This shows
the NO3 species concentration absolute error (scattered
points) and concentration value (solid line) for 8000
values in layer 1 of the domain. The ranking is in
increasing concentration value from left to right.

7. LESSONS LEARNED

7.1 Benefits of the FSparse method

Comparing runtime performance for CMAQ
5.2.1 in the new OpenMP parallel version with the
U.S. EPA release showed benefits such as:

 Thread speedup as high as 1.42 with 8
threads

 Hybrid MPI+OpenMP algorithms that offer
more on-node compute intensity as the
number of available threads rises

 Numerical values of predicted species
concentration that are within the error
tolerance inherent in the algorithms.

7.2 Next steps

A continuation of this work would include:

 Repeat of selected cases with the IB
interconnect upgrade.

 Extension to the Rosenbrock version of
CMAQ.

 Comparison of EBI, Rosenbrock, and
GEAR solver versions of CMAQ.

 Further compiler comparisons of Intel and
Portland results.

8. CONCLUSIONS

This report has described an analysis of
CMAQ 5.2.1 behavior in the standard U.S. EPA
release and a new thread parallel version of
CMAQ suitable for the Rosenbrock and Gear
solvers. In this version (v6.3) subroutines common
to both algorithms have been successfully
developed and tested in the Gear case.

The new FSparse version of CMAQ offers
layers of parallelism not available in the standard
U.S. EPA release and is portable across multi-
and many-core hardware and compilers that
support thread parallelism.

REFERENCES

[1] Delic, G., 2016: see presentation at the Annual
CMAS meeting (http://www.cmasecenter.org).

[2] Jacobson, M. and Turco, R.P., (1994), Atmos.
Environ. 28, 273-284.

[3] INTEL: Intel Corporation, http://www.intel.com

[4] https://en.wikipedia.org/wiki/HP_BladeSystem

[5] PGI Compilers & Tools https://www.pgroup.com

http://www.cmasecenter.org/
http://www.intel.com/

