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1. INTRODUCTION 
 
This presentation reports on implementation of 

the parallel sparse matrix solver, FSparse [1], in 
the Chemistry Transport Model (CTM) in CMAQ.  
In this report performance results of the original 
EPA [2] and FSparse versions are presented for 
the GEAR version of the CTM. This release is v6.3 
and is a major redesign. It is applicable in CMAQ 
with either the Rosenbrock (ROS3) or SMV Gear 
(GEAR) algorithms in the CTM. In FSparse 
different blocks of cells are distributed to separate 
threads in the parallel thread team.  
 

2. TEST BED ENVIRONMENT 
 

2.1 Hardware 
 

The hardware systems chosen were the 
platforms at HiPERiSM Consulting, LLC, shown in 
Table 2.1. Nodes 20 and 21 host two Intel E5v3 
CPUs with 16 cores and each node has four Intel 
Phi co-processor many integrated core (MIC) 
cards [3] with 60 and 59 cores, respectively. 
These are the base nodes of a heterogeneous 
cluster that includes a HP blade server [4] hosting 
nodes 27 to 34 with dual 4-core Intel E5640 CPUs. 
The total core count of this cluster is 128 with ~2 
Tflops (peak) in single precision. For the standard 
U.S. EPA version the MPI executions are 
launched across multiple combination of these 
nodes. This cluster allows for comparison of the 
FSparse hybrid (MPI + OpenMP) parallel versions 
of CMAQ with the original EPA version. 
 

2.2 Compilers 
 

Results reported here implemented the Intel 
Parallel Studio® suite (release 17.6, [3]) and 
Portland Group compiler (release 18.1, [5]) with 
compiler options for a heterogeneous cluster. In 
the Portland case, utilization of an Intel wrapper 
enabled linking to the Intel MPI library. 
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2.3 Episode studied 
 

This report used the benchmark test data 
available in the CMAQ 5.2.1 download for a single 
day (24 hour) episode. This episode was for July 
1st, 2011, using the cb6r3_ae6_aq mechanism 
with 149 active species and 329 reactions. For 
day/night chemistry this results in 1338/1290 non-
zero entries in the Jacobian matrix. The episode 
was run for a full 24 hour scenario on a 80 X 100 
California domain at 12 Km grid spacing and 35 
vertical layers for a total of 280,000 grid cells. In 
this report a variable number of MPI processes 
(NP) were used in both CTM versions with 8, 12, 
and 16 threads (OMP) in the OpenMP case. 
 
Table 2.1. CPU platforms at HiPERiSM Consulting, LLC 

Platform Node20-21 
(each node) 

Node27-34 
(each node) 

Operating system OpenSuSE 13.2 OpenSuSE  42.3 

Processor Intel™ x86-64 
(E5-2698v3) 

Intel™ x86-64 
(E5640) 

Coprocessor 4 x Intel Phi 
7120/5120 

NA 

Peak Gflops / CPU 
(SP/DP) 

~589 (SP) ~ 43 (DP) 

Power 
consumption 

135 Watts 80 Watts 

Cores per 
processor 

16 4 

Power per core 8.44 Watts 20 Watts 

Processor count 2 2 

Total core count 32 8 

Clock 2.3 GHz 2.67 GHz 

Bandwidth 68 GB/sec 25.6 GB/sec 

Bus speed 2133 MHz 2933 MHz 

L1 cache 16x32 KB 4x32 KB 

L2 cache 16x256 KB 4x256 KB 

L3 cache 40 MB 12 MB 

 
In the following two performance metrics are 

introduced to assess parallel performance in the 
MPI and OpenMP modified code: 

(a) Speedup is the gain in runtime over the 
standard U.S. EPA version, 

(b) Scaling is the gain in runtime with MPI 
process or thread counts larger than 1, 
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relative to the result for a single MPI 
process or thread on the host CPU. 

 

2.4 Interconnect fabric 
 

Results reported here used this configuration: 
 
1. Homogeneous cluster consisting of 

node20 & 21 connected via a 10GigE 
switch. 

2. Heterogeneous cluster consisting of node 
20 & 21 and the HP blade. The blade 
chassis has an internal switch connecting 
node27-34 and uplinks to the 10GigE 
switch to join all nodes together.  

 
For MPI traffic in either cluster mode 

bandwidth is approximately 10G bits/sec. A 
pending upgrade to an Infiniband (IB) fabric will 
raise bandwidth to a (theoretical) limit of 40G 
bits/sec. 

 
3. RESULTS FOR TWO CMAQ MODELS 

 

3.1 Performance profile of CMAQ 
 

This section repeats the profile results of the 
standard CMAQ 5.2.1 distribution in the testbed 
environment identified in Section 2. The 
optimization level with the Intel compiler was “-O2” 
because higher optimizations caused 
segmentation faults at runtime. This could have 
been caused by (as yet) unresolved code bugs in 
CMAQ, or the Intel compiler itself. Since the 
previous report, several compiler bugs were 
corrected, but not all have been resolved to-date, 
(as with some issues within CMAQ itself). In 
addition, several issues in the thread parallel 
version of CMAQ were corrected. 

For a profile of where time is consumed Fig. 
3.1 compares the fraction of total wall clock time 
expended in the dominant science processes in 
CMAQ. The CHEM process is the Gear (GEAR) 
version of the CTM. The EPA version is compared 
with the FSparse threaded version for 8, 12, and 
16 OpenMP threads, as identified in the legend. 
As the fraction of time in CHEM decreases the 
fraction of time in the other science processes 
increases. 
 

 
Fig 3.1: Fraction of wall clock time (percent) by science 
process for the FSparse GEAR version of CMAQ for 
NP=1 and OpenMP thread counts of 8, 12, and 16. 

 

3.2 Intel compiler MPI performance 
 

For the case of the Intel compiler Table 3.1 
shows wall clock time, MPI scaling, and parallel 
efficiency for the EPA GEAR CTM solver, with 
various values of NP in the range 1 to 64 on nodes 
20 and 21 (Table 2.1). These two nodes form a 
homogeneous sub-cluster consisting of the two 
fastest nodes. Note that the MPI parallel efficiency 
declines to 49% with NP=64. This loss in parallel 
efficiency is due to the diminished work load per 
MPI process with a domain of 280,000 cells.  
Partitioning amongst the available number of MPI 
processes (after division into blocks of 50 cells) 
gives 280,000/50 = 5600 blocks for NP = 1, and 
5600 / NP thereafter, when NP > 1. 
 
Table 3.1. MPI wall clock time (seconds), scaling 
(relative to NP=1), and MPI parallel efficiency for the 
U.S. EPA version of CMAQ with the GEAR solver using 
the Intel compiler on nodes 20 and 21. 

NPROW 
X 

NPCOL 

GEAR solver algorithm 

Wall clock 
time 

MPI scaling 
MPI 

efficiency 

1 20066 1.0 1.00 

2x2=4 5272 3.8 0.95 

4x2=8 2813 7.1 0.89 

4x4=16 1612 12.4 0.78 

8x4=32 1001 20.0 0.63 

8x8=64 645 31.1 0.49 

 
Results with the Portland compiler are limited 

for the U.S. EPA version of CMAQ because of a 
runtime failure due to a compiler bug that fails to 
pass bounds on an array by reference to a 
subroutine. 
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4. RESULTS FOR THE OpenMP MODEL 
 

4.1 FSparse GEAR speedup versus EPA 
 

In FSparse an OpenMP modification was 
implemented in the standard CMAQ version of the 
CTM procedure since the dominant amount of 
time is expended there for the GEAR solver. 
Performance results using the Intel compiler are 
presented in this section. 

Fig. 4.1 shows wall clock time (in seconds) for 
various combinations of MPI processes for EPA 
and FSparse version of CMAQ on the 
heterogeneous cluster. Due to the core count limit 
on each blade, the use of only 8 OpenMP threads 
was the default. Fig. 4.2 shows the corresponding 
speedup of the OpenMP version over the EPA 
release. In both cases the horizontal axis shows 
the number of MPI processes, and the multiple 
values are for differing combinations of 
participating nodes of the cluster. Variability for 
any fixed value of NP is determined by how many 
processes are resident on the fastest nodes (20 
and 21), versus the number on the slower nodes 
(27 to 34). 
 

 
Fig. 4.1 Wall clock time (seconds) for the GEAR solver 
in the standard U.S. EPA and the 8 thread OpenMP 
versions of CMAQ for NP=1 to 16 using the Intel 
compiler for various combinations of nodes. 
 

The two examples where the EPA version is 
faster correspond to MPI processes divided 
between node20 and 21 of the homogeneous 
cluster. In this case MPI communication is 
dominantly through memory. 

Fig. 4.3 shows thread speed up over the U.S. 
EPA times for 288 calls to the CTM with NP=1 MPI 
processes. Note the 1.5 times performance boost 
with 16 threads compared to the 8 thread result. 
 

 
Fig. 4.2 Corresponding to Fig. 4.1 this shows OpenMP 
speedup with 8 threads for the GEAR solver in the 
thread parallel version over the standard U.S. EPA 
model using the Intel compiler for various combinations 
of nodes. 

 

 
Fig. 4.3 Parallel thread speedup over the standard U.S. 
EPA model using the Intel compiler in 288 calls to 
CHEM with GEAR solver for 8, 12 and 16 threads, for 
NP=1 MPI process in the 24 hour episode. 

 

4.2 MPI parallel efficiency 
 

Another metric of performance is parallel 
efficiency. In the MPI case this is defined as: 

 
Scaling(n) = time (NP=1) / time (NP=n) 
Efficiency(n)= Scaling(n) / n 

 
This was introduced in the last column of 

Table 3.1 for the original EPA version of CMAQ on 
the homogeneous cluster of node20 and 21.  

Intel trace tools allow instrumentation that 
measures the fraction of run time expended in MPI 
message passing versus computation. In the latter 
case trace instrumentation also separates scalar 
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and thread parallel computation fractions. Fig. 4.4 
shows this summary for the FSparse version of 
CMAQ. The dominant fraction is the time spent in 
MPI message passing at larger NP values. The 
exceptions are for cases when MPI processes 
reside on the fastest nodes where MPI 
communication is predominantly via on-node 
memory, and not the interconnect fabric. 

Fig. 4.5 shows MPI scaling for EPA and 
FSparse versions of CMAQ. The variability could 
be a consequence of either (a) the 10GigE 
interconnect between nodes (see discussion in 
Section 2.4), or (b) slower processors on the blade 
servers.  Nevertheless the OpenMP version 
delivers enhanced scaling. In all cases (with one 
exception) the FSparse version shows greater MPI 
speedup. 

Fig 4.6 shows a regression plot of fraction of 
run time spent (percent) in OpenMP and scalar 
computation regions versus the fraction (percent) 
in MPI communication. This demonstrates three 
features: 

 

 The fraction of time in MPI communication 
increases as the fraction of time in 
computation decreases   

 The scalar computation fraction dominates 
whenever the MPI communication fraction 
is greater than 12% 

 The OpenMP computation fraction 
dominates when the MPI communication 
fraction is less than 12%  

 

 
Fig. 4.4 For the 8 thread FSparse version of CMAQ this 
compares the fraction of total time (percent) spent in 
MPI message passing, OpenMP computation region, 
and scalar computation region with the Intel compiler for 
various combinations of nodes. 
 

 
 
Fig. 4.5. MPI scaling versus number of processes for 
EPA and 8 thread FSparse versions of CMAQ of the 
GEAR solver with the Intel compiler for various 
combinations of nodes. 

 

 
Fig. 4.6. For the 8 thread FSparse version of CMAQ this 
shows the percent of total time spent in the OpenMP 
and scalar regions (vertical) verses that in MPI 
communication (horizontal) with the Intel compiler for 
various combinations of nodes. 

 
The negative regression trend in Fig. 4.6 for 

both OpenMP and scalar computation fractions is 
the result of the decreasing domain size per MPI 
process (as discussed in Section 3.2). 
 

4.3 Portland versus Intel Compiler 
 

Table 4.1 lists wall clock time for CMAQ in the 
FSparse OpenMP version using 8 threads with the 
number, NP, of MPI processes shown in the first 
column. Results of Intel and Portland compilers 
are compared. 
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Table 4.1. MPI wall clock time (seconds) on the 
homogeneous cluster for the 8 thread FSparse version 
of CMAQ with the GEAR solver using the Intel and 
Portland compilers. 

NPROW 
X 

NPCOL 
=NP 

GEAR solver algorithm (wall clock time) 

Intel Portland 
Portland / 

Intel 

1 20059 18110 0.90 

2x2=4 5272 5920 1.12 

4x2=8 2813 3991 1.42 

 
 

5. SUMMARY OF KEY POINTS 
 

5.1 MPI communication 
 

 MPI communication time tends to compete 
with, or exceed, computation time. 

 MPI scaling increases with process count 

 Corresponding to this MPI parallel 
efficiency decreases 

 

5.2 Computation 
 

 CHEM is by far the dominant science 
process in CMAQ computation time 

 Scalar computation time dominates, or 
competes with, OpenMP computation time 

 The scalar computation fraction (of total 
time) dominates whenever the MPI 
communication fraction is greater than 
12% 

 The OpenMP computation fraction 
dominates when the MPI communication 
fraction is less than 12%  

 

6. NUMERICAL ISSUES 
 

6.1 Comparing concentration values 
 

Any discrepancy between predictions of the 
JSparse [2] and FSparse [1] algorithms in the two 
methods is explained by the way precision is 
treated in each. The CTM solver uses double 
precision arithmetic but accepts some input data 
from single precision variables (temperature, 
pressure, photolysis rates, reaction rates, etc.). 
Therefore all expressions in FSparse are 
performed in double precision. The acid test is to 
compare the computed concentration values for 
selected species as predicted by the EPA (using 
JSparse) and the thread parallel version (using 
FSparse).  

Concentration values for 11 selected species 
(O3, NOx, etc) were compared for the entire 

domain and all 24 time steps. Examples of such a 
comparison are shown in Figs. 6.1 to 6.4, where 
the absolute error is shown as the difference in 
predicted concentrations. To within the tolerances 
required in GEAR (ATOL=1.0e-09, RTOL=1.0E-
03), agreement was observed for both Intel and 
Portland compilers. 

 

 
Fig 6.1: Intel compiler results for the FSparse GEAR 
solver of CMAQ with 8 OpenMP threads. This shows 
the O3 species concentration absolute error (scattered 
points) and concentration value (solid line) for 8000 
values in layer 1 of the domain. The ranking is in 
increasing concentration value from left to right. 
 

 
Fig 6.2: Portland compiler results for the FSparse GEAR 
solver of CMAQ with 8 OpenMP threads. This shows 
the O3 species concentration absolute error (scattered 
points) and concentration value (solid line) for 8000 
values in layer 1 of the domain. The ranking is in 
increasing concentration value from left to right. 
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Fig 6.3: Intel compiler results for the FSparse GEAR 
solver of CMAQ with 8 OpenMP threads. This shows 
the NO3 species concentration absolute error (scattered 
points) and concentration value (solid line) for 8000 
values in layer 1 of the domain. The ranking is in 
increasing concentration value from left to right. 

Fig 6.4: Portland compiler results for the FSparse GEAR 
solver of CMAQ with 8 OpenMP threads. This shows 
the NO3 species concentration absolute error (scattered 
points) and concentration value (solid line) for 8000 
values in layer 1 of the domain. The ranking is in 
increasing concentration value from left to right. 
 

7. LESSONS LEARNED 
 

7.1 Benefits of the FSparse method 
 

Comparing runtime performance for CMAQ 
5.2.1 in the new OpenMP parallel version with the 
U.S. EPA release showed benefits such as: 

 Thread speedup as high as 1.42 with 8 
threads 

 Hybrid MPI+OpenMP algorithms that offer 
more on-node compute intensity as the 
number of available threads rises 

 Numerical values of predicted species 
concentration that are within the error 
tolerance inherent in the algorithms. 

 

7.2 Next steps 
 

A continuation of this work would include: 
 

 Repeat of selected cases with the IB 
interconnect upgrade. 

 Extension to the Rosenbrock version of 
CMAQ. 

 Comparison of EBI, Rosenbrock, and 
GEAR solver versions of CMAQ. 

 Further compiler comparisons of Intel and 
Portland results. 

 

8. CONCLUSIONS 
 

This report has described an analysis of 
CMAQ 5.2.1 behavior in the standard U.S. EPA 
release and a new thread parallel version of 
CMAQ suitable for the Rosenbrock and Gear 
solvers. In this version (v6.3) subroutines common 
to both algorithms have been successfully 
developed and tested in the Gear case. 

The new FSparse version of CMAQ offers 
layers of parallelism not available in the standard 
U.S. EPA release and is portable across multi- 
and many-core hardware and compilers that 
support thread parallelism. 
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