

Atmospheric and **Environmental Research**

Data Driven Ozone Forecasting in Texas Urban Areas Richard Pernak, Matthew Alvarado (malvarad@aer.com), Jennifer Hegarty, and Thomas Nehrkorn Generalized Additive Models (GAMs) • GAMs are extensions of multiple linear

Introduction

- We developed three statistical models that can forecast tomorrow's MDA8 O_3 in six urban areas in Texas.
- Quantitative forecasts using generalized additive models (GAMs)
- Probabilistic forecasts using GAMs and logistic regression
- Classification forecasts using the Random Forest method
- Here we show how these forecast models performed during the 2016 O_3 season and the improvements made to each model based on this evaluation.

Near-Real-Time Data Sources

Meteorological Forecast Data

- Model Output Statistics (MOS) forecasts based on the numerical North American Mesoscale 12-km (NAM-12) forecasts from NCEP.
- NAM-12 upper air temperatures and geopotential heights.

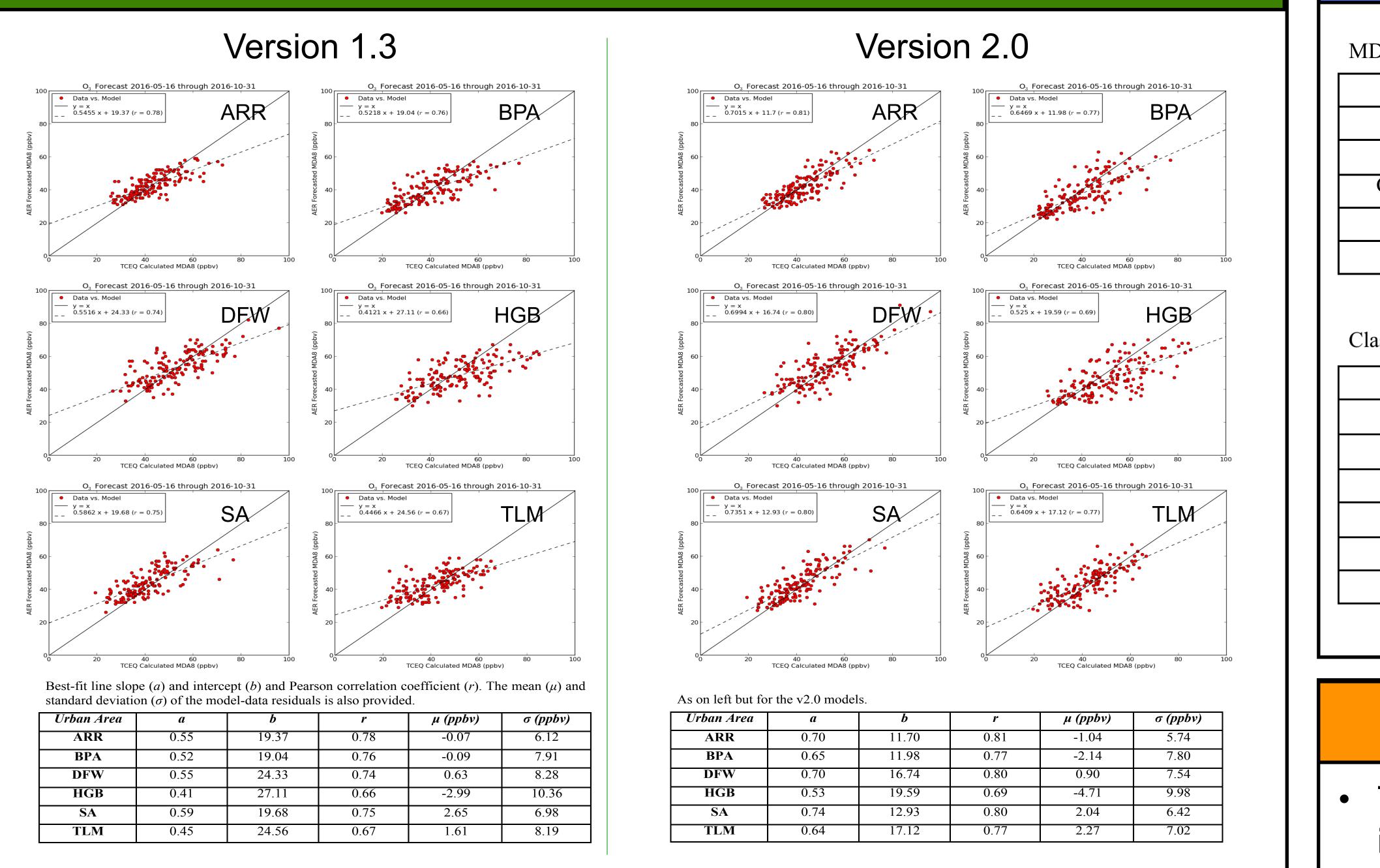
TCEQ Monitor Ozone Data

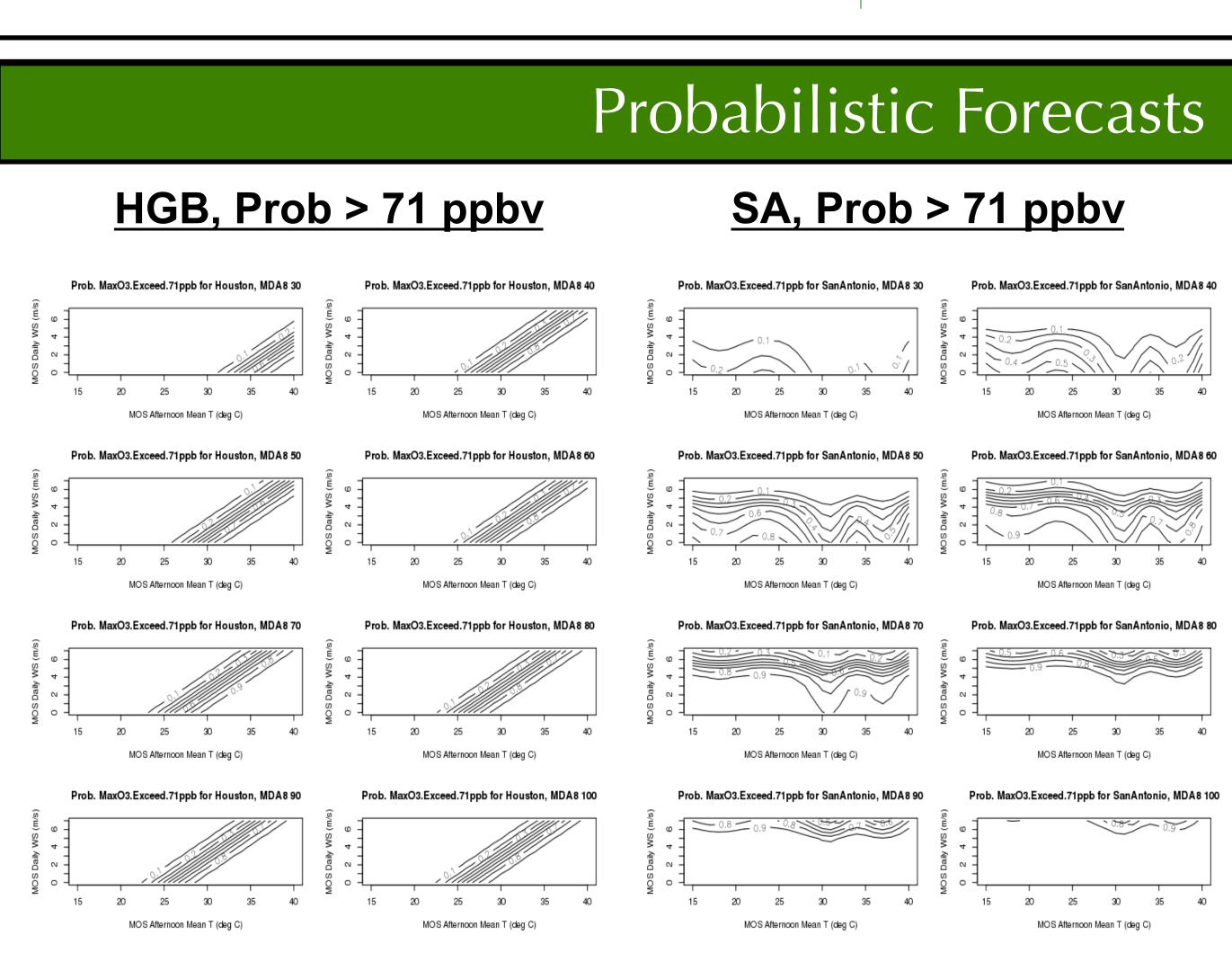
TCEQ Site Abbreviation	MOS Site Abbreviation	Associated City	
ARR	KAUS	Austin/Round Rock	
BPA	КВРТ	Beaumont/Port Arthur	
DFW	KDFW	Dallas/Fort Worth	
HGB	KIAH	Houston/Galveston/Brazoria	
SA	KSAT	San Antonio	
TLM	KGGG	Tyler/Longview/Marshall	

Predictor Variables Used in the Forecast Models

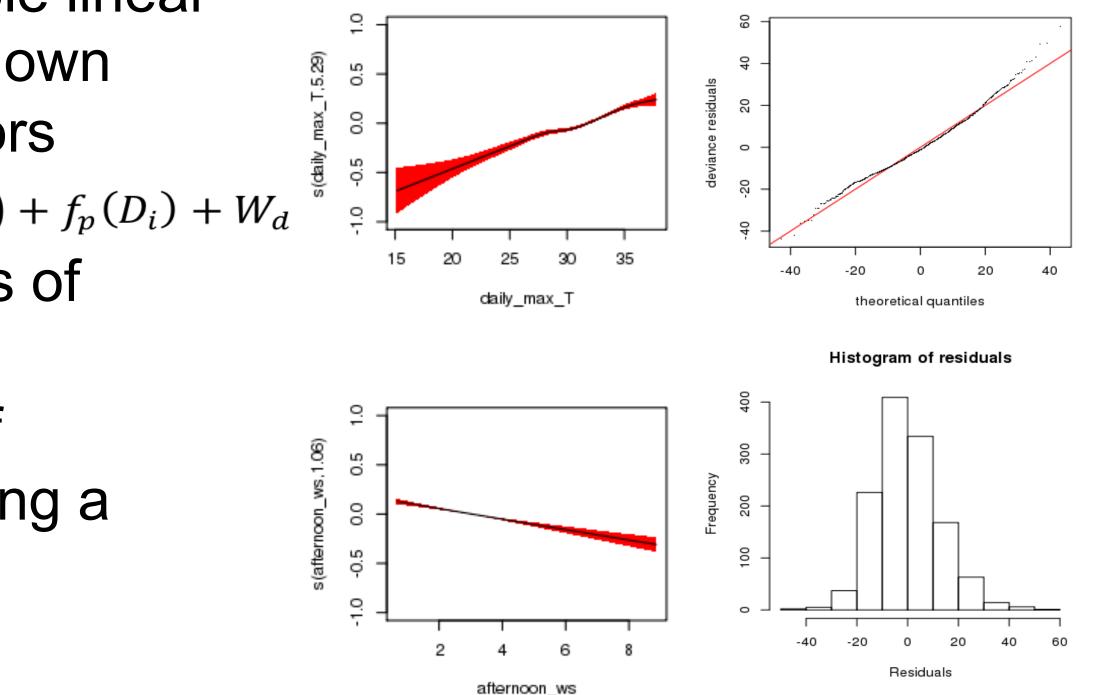
Significance codes are: '***', significant at the α = 0.001 level; '**', significant at the α = 0.01 level; '*', significant at the α = 0.05 level; '.', significant at the α = 0.1 level.

Version 1.3


	ARR	BPA	DFW	HGB	SA	TLM
Day of Week	* * *	* * *	***	* * *	* * *	***
MOS.Afternoon.T	* * *	* * *	**	* * *	**	*
MOS.Diurnal.T	* * *	**		* * *	*	*
MOS.Mean.RH			* * *		* * *	
MOS.Mean.Dew.Point	* * *	*	*	* * *	*	
MOS.Mean.Wind.Speed	* * *	* * *	* * *	* * *	* * *	***
MOS.Mean.Wind.Direction	* * *	* * *	*	* * *	**	***
NAM_T_Diff (925 mb)						
Day of Year	* * *	* * *	***	* * *	* * *	**
MDA8.O3.max	* * *	* * *	* * *	* * *	* * *	***

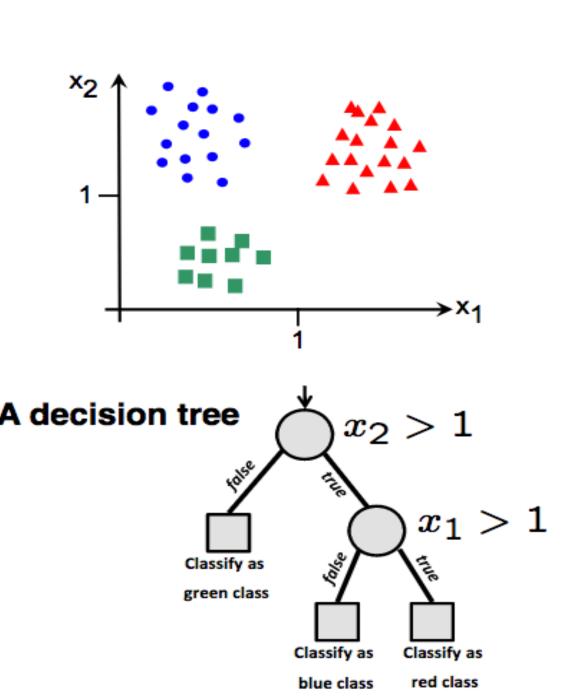

Version 2.0

Predictor	ARR	BPA	DFW	HGB	SA	TLM
Day of Week	***	* * *	***	* * *	***	***
Day of Year	***	* * *	***	* * *	***	***
Previous Day MDA8	***	***	***	***	***	***
MOS.Afternoon.T	***	***	***	***	*	***
MOS.Diurnal.T		•	***	*	***	*
H_2O in g m ⁻³	***	***	***	***	***	***
MOS.Mean.Wind.Speed	***	***	***	***	***	***
MOS.Mean.Wind.Direction	*	***		***		


- regression models that fit unknown non-linear functions of predictors
- $g(\mu_i) = \beta_o + f_1(x_{i,1}) + f_2(x_{i,2}) + \cdots + f_n(x_{i,n}) + f_p(D_i) + W_d^{\bigcup}$
- Allows quantitative predictions of tomorrow's MDA8 O_3 .
- Can also predict probability of tomorrow's MDA8 O₃ exceeding a given threshold using logistic regression.

Quantitative Forecasts

A PORTION OF THE DATA OR OTHER INFORMATION IN THIS DOCUMENT WAS PREPARED UNDER A CONTRACT FROM THE TEXAS COMMISSION ON ENVIRONMENTAL QUALITY (TCEQ) The contents of this document do not necessarily reflect the views and policies of the TCEQ, nor does the TCEQ, nor does the TCEQ, nor does the TCEQ endorse any trade names or recommend the use of any commercial products mentioned in this document. © Atmospheric and Environmental Research, Inc. (AER), 2017. Government Sponsorship Acknowledged.


ban Area	Threshold	Reliability	ROC Area
	(ppb)		
ARR	55	0.00	0.90
BPA	55	0.00	0.79
DFW	55	0.04	0.88
DFW	71	0.01	0.91
HGB	55	0.10	0.51
HGB	71	0.00	0.80
SA	55	0.01	0.89
TLM	55	0.15	0.88
	55	0110	
TLM	71	0.01	0.99
TLM	71 C Area statistics <i>Threshold</i>		0.99
TLM oility and RO T rban Area	71 C Area statistics <i>Threshold</i> (ppb)	0.01 for the v2.0 mod <i>Reliability</i>	0.99 del of each urb <i>ROC Area</i>
TLM oility and RO <i>Trban Area</i> ARR	71 C Area statistics <i>Threshold</i> (ppb) 55	0.01 for the v2.0 mod <i>Reliability</i> 0.01	0.99 del of each urb <i>ROC Area</i> 0.89
TLM oility and RO <i>rban Area</i> ARR BPA	71 C Area statistics <i>Threshold</i> (ppb) 55 55	0.01 for the v2.0 mod <i>Reliability</i> 0.01 0.01	0.99 del of each urb <i>ROC Area</i> 0.89 0.78
TLM oility and RO <i>Trban Area</i> ARR	71 C Area statistics <i>Threshold</i> (ppb) 55	0.01 for the v2.0 mod <i>Reliability</i> 0.01	0.99 del of each urb <i>ROC Area</i> 0.89
TLM Dility and RO Trban Area ARR BPA DFW	71 C Area statistics <i>Threshold</i> (ppb) 55 55 55 55	0.01 for the v2.0 mod <i>Reliability</i> 0.01 0.01 0.00	0.99 del of each urb <i>ROC Area</i> 0.89 0.78 0.90
TLM Dility and RO Trban Area ARR BPA DFW DFW	71 C Area statistics <i>Threshold</i> (ppb) 55 55 55 55 71	0.01 for the v2.0 mod <i>Reliability</i> 0.01 0.01 0.00 0.01	0.99 del of each urb <i>ROC Area</i> 0.89 0.78 0.90 0.92
TLM bility and RO <i>Trban Area</i> ARR BPA DFW DFW HGB	71 C Area statistics <i>Threshold</i> (ppb) 55 55 55 55 71 55	0.01 for the v2.0 mod <i>Reliability</i> 0.01 0.01 0.00 0.01 0.02	0.99 del of each urb <i>ROC Area</i> 0.89 0.78 0.90 0.92 0.82
TLM bility and RO <i>Trban Area</i> ARR BPA DFW DFW HGB HGB	71 C Area statistics <i>Threshold</i> (ppb) 55 55 55 55 71 55 71 55 71	0.01 for the v2.0 mod <i>Reliability</i> 0.01 0.01 0.00 0.01 0.02 0.00	0.99 del of each urb <i>ROC Area</i> 0.89 0.78 0.90 0.92 0.82 0.82 0.78

quality class in terms of 20 C meteorological criteria. However, they tend to A decision tree $x_2 > 1$ over-fit the data. Random forests average $n x_1 > 1$ Classify as green class different decision trees together to reduce this over-fitting. Classification Forecasts MDA8 classes used in the Version 2.0 random forest model. Classification forecast success, false alarm, and miss rates for all models. Conclusions The v2.0 quantitative forecast models are a significant improvement over v1.3, with higher correlations, better slopes, and less variance. The v2.0 quantitative forecasts explain over 70% of the deviance (variance) in each urban area, a significant improvement upon the v1.3 models (56-62%). The probabilistic models show little predictive skill. The random forest classification models are able to correctly predict the AQI classification 67% of the time in HGB, 77% of the time in DFW, and over 86% of the time elsewhere. False negatives were more likely than false positives.

Random Forest

 Decision tree models can be constructed to predict tomorrow's ozone air

Color Class	O ₃ MDA8 Range (ppb)
Green (Good)	MDA8 < 55
Yellow (Moderate)	$55 \le MDA8 < 71$
nge (Unhealthy for Sensitive Groups)	$71 \leq MDA8 < 86$
Red (Unhealthy)	$86 \leq MDA8 < 105$
Purple (Very Unhealthy)	105 < MDA8

Jrban Area	Success Rate	False Alarm Rate	Miss Rate	
Austin	87.01%	4.54%	8.44%	
Beaumont	86.36%	3.25%	10.39%	
Dallas	77.27%	7.14%	15.58%	
Houston	66.88%	1.95%	31.17%	
an Antonio	89.12%	2.72%	8.16%	
Tyler	90.26%	2.60%	7.14%	

We recommend that a combination of the quantitative forecasts and the classification forecasts be used.

Future work will focus on improving the performance of the forecasts in the high tail of the observations to reduce the "miss rate" where the severity of a poor ozone event is under-predicted.