Simulation of Arctic Black Carbon using Hemispheric CMAQ: Role of Russia's BC Emissions, Transport, and Deposition

Kan Huang¹ and Joshua S. Fu^{1,2}

¹Department of Civil & Environmental Engineering The University of Tennessee

²UT-ORNL Center for Interdisciplinary Research and Graduate Education

14th CMAS Conference

October 5 - 7, 2015

Outline

Introduction

- Background: climate effects from black carbon
- Motivation: mitigate warming in the Arctic
- Black carbon emissions reconstruction for Russia
- To fill information gaps
- Numerical simulation and evaluation
- Hemispheric WRF/CMAQ modeling in the Arctic
- Impact assessment
- Transport and deposition of black carbon in the Arctic

Bond et al., 2013, JGR

Main transport pathways of air pollutants to the Arctic

(AMAP, 2011)

Ensemble model simulations of Arctic black carbon

Model	Gas-phase	Aerosols	Prescribed lifetime	Horizontal Resolution
1. CAMCHEM	NO _x , CO	SO2, BC	Y	1.9
2. ECHAM5-HAMMOZ		SO2, BC		2.8
3. EMEP	NO _x , CO	SO2		1.0
4. FRSGC/UCI	NO _x , CO		Y	2.8
5. GEOSChem	NOx	SO2, BC		2.0
6. GISS-PUCCINI	NO _x , CO	SO2, BC	Y	4.0
7. GMI	NO _x , CO	SO2, BC	Y	2.0
8. GOCART-2		SO2, BC		2.0
LMDz4-INCA		SO2, BC		2.5
10. LLNL-IMPACT	NO _X , CO	SO2, BC		2.0
 MOZARTGFDL 	NO _x , CO	SO2, BC	Y	1.9
MOZECH	NO _x , CO		Y	2.8
13. SPRINTARS		SO2, BC		1.1
STOCHEM-HadGEM1	NO _X , CO			3.8
STOCHEM-HadAM3	NO _X , CO	SO2	Y	5.0
16. TM5-JRC	NOx	SO2, BC		1.0
17. UM-CAM	NO _x , CO		Y	2.5

All models strongly underestimated BC concentrations in the Arctic

Across-the-board adjustments such as altering wet scavenging rates may improve biases in one region but make them worse in another (*Bond* et al., 2013).

Motivations

Arctic black carbon simulation problems:

Large diversity of modeling BC among different models (Shindell et al., 2008)
Strong underestimation of BC in Arctic (Shindell et al., 2008; Koch et al., 2009)
Improper wet scavenging parameterizations (Bourgeois et al., 2011; Liu et al., 2011)

Major emission source regions for Arctic black carbon:

Europe (EMEP) United States (USEPA NEI) Canada (NPRI)

Outline

Introduction

- Background: climate effects from black carbon
- Motivation: mitigate warming in the Arctic

Black carbon emissions reconstruction for Russia

To fill information gaps

Numerical simulation and evaluation

Hemispheric WRF/CMAQ modeling in the Arctic

Impact assessment

Transport and deposition of black carbon in the Arctic

Gas flaring: a missing BC source

Top 20 gas flaring countries

Russia possess the largest natural gas reserves of 24% in the world as of 2009. (*Dmitry Volkov, 2008*)

Gas flaring BC emission factor measurement

In situ measurement of gas flaring B emission factor (Johnson et al., 2013)

Sky-LOSA : Line-Of-Sight Attenuation of sky-light

Compressor station flare in Mexico, 2011

- 0.51-m dia., lightly sooting flare (τ≈90%)
- Soot emission rate: 0.067 ± 0.02 g/s
- Roughly equivalent to emissions from
 16 diesel buses continuously driving

Gas Plant Flare in Uzbekistan, 2008

- 1.05-m dia., visibly sooting flare (τ≈60%)
- Soot emission rate: 2.0 ± 0.66 g/s

16

 Roughly equivalent to emissions from 500 diesel buses continuously driving

Significant difference of BC EF from different flares
 EF measured by Sky-LOSA is not appropriate for emission estimation (i.e. unit in g/s)

Need mass of black carbon per mass of fuel burned

Courtesy:http://www.unep.org/ccac/Portals/50162/docs/ccac/initiatives/oil_and_gas/Sky %20-%20LOSA.PDF (taken from slides by Prof. Matthew Johnson from Carleton Univ.)

Estimation of gas flaring EF and emission in Russia

laboratory scale flare experiment

(McEwen and Johnson, 2012)

Associated Gas		Heating Value	Volume Percentage (%)			
Composition		(MJ/m ³)	Stage 1	Stage 2	Stage 3	
	Methane	CH_4	39.9012	61.7452	45.6094	19.4437
	Ethane	C₂H₅	69.9213	7.7166	16.314	5.7315
	Propane	C_3H_8	101.3231	17.5915	21.1402	4.5642
	i-Butane	$i-C_4H_{10}$	133.1190	3.7653	5.1382	4.3904
	n-Butane	$n-C_4H_{10}$	134.0610	4.8729	7.0745	9.6642
	i-Pentanes	$i-C_5H_{12}$	148.4913	0.9822	1.4431	9.9321
	n-Pentane	$n-C_5H_{12}$	141.1918	0.9173	1.3521	12.3281
	i-Hexane	$i-C_6H_{14}$	176.8591	0.5266	0.7539	13.8146
	n-Hexane	$n-C_6H_{14}$	177.1907	0.2403	0.2825	3.7314
	i-Heptane	$i-C_7H_{16}$	205.0068	0.0274	0.1321	6.726
	Benzene	C₅H₅	147.3980	0.0017	0.0061	0.0414
	n-Heptane	$n-C_7H_{16}$	205.0068	0.1014	0.0753	1.5978
	i-Octane	$i-C_8H_{18}$	232.8155	0.0256	0.0193	4.3698
	Toluene	C_7H_8	373.0365	0.0688	0.0679	0.0901
	n-Octane	$n-C_8H_{18}$	232.8155	0.0017	0.0026	0.4826
	i-Nonane	$i-C_9H_{20}$	260.6688	0.0006	0.0003	0.8705
	n-Nonane	$n-C_9H_{20}$	260.6688	0.0015	0.0012	0.8714
	i-Decane	$i-C_{10}H_{22}$	288.4775	0.0131	0.01	0.1852
	n-Decane	$n-C_{10}H_{22}$	288.4775	0.0191	0.016	0.1912
	Carbon dioxide	CO_2	-	0.0382	0.1084	0.7743
	Nitrogen	N_2	-	1.343	0.453	0.1995
	Hydrogen sulfide	H_2S	-	0	0	0

 $F_{HC} = \alpha_{HC, SI} * \beta_{SI} + \alpha_{HC, S2} * \beta_{S2} + \alpha_{HC, S3} * \beta_{S3},$ $\beta_{S3}: [10\%, \dots 15\%]; \beta_{SI}: [50\%, \dots 70\%], \text{ and } \beta_{S2} = 1 - \beta_{SI} - \beta_{S3},$ $HV_{APG} = \sum HV_{HC} * F_{HC},$

Composition of the associated gas in Russia

Estimation of gas flaring EF and emission in Russia (cont.)

BC_{flaring} = Volume * EF_{flare}

Volume : Gas flaring volume of Russia in 2010 was **35.6 BCM** (billion cubic meters) The BC emission from Russia's gas flaring in 2010 is estimated to be **81.0 Gg**.

Spatial distribution of gas flaring BC emission

Gas flare areas (red polygon) retrieved from satellite (U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS))

Spatial allocation proxy (contour) nighttime lights product

Data source: NOAA NGDC

Russian anthropogenic BC emissions by sectors

Outline

Introduction

- Background: climate effects from black carbon
- Motivation: mitigate warming in the Arctic
- Black carbon emissions reconstruction for Russia
- To fill information gaps
- Numerical simulation and evaluation
- Hemispheric WRF/CMAQ modeling in the Arctic
- Impact assessment
- Transport and deposition of black carbon in the Arctic

Arctic black carbon modeling domain

Hemispheric CMAQ (H-CMAQ)

Black carbon emissions inputs

Model performances in US, W. Europe and China

Observational sites in Russia and the Arctic

AERONET (Russia)

Moscow

(55.7 ° N, 37.5 ° E)

Zvenigorod

(55.7 ° N, 36.8 ° E)

<u>Yekaterinburg</u>

(57.0 ° N, 59.5 ° E)

<u>Tomsk</u>

(56.5 ° N, 85.0 ° E)

<u>Yakutsk</u>

(61.7 ° N, 129.4 ° E)

<u>Ussuriysk</u>

(43.7 ° N, 132.2 ° E)

Arctic sites Barrow, USA (71.3 ° N, 156.6 ° W) Alert, Canada (82.5 ° N, 62.3 ° W) Zeppelin, Norway (78.9 ° N, 11.9 ° E) Tiksi, Russia (71.6 ° N, 128.9 ° E)

Model performance in Russia

Model performance in Russian flaring source regions

MISR AAOD: 0.0053; CMAQ AAOD: 0.0045; NMB: - 14.0%

MISR: The Multi-angle Imaging SpectroRadiometer

Role of Russian BC emissions in the Arctic

Improvement of modeled BC levels are mainly found during the Arctic Haze periods, i.e. December – March.

Role of gas flaring in triggering the high BC episodes

Gas flaring contribution as a function of measured BC

Gas flaring from Russia contributes an increasing fraction as the measured BC concentrations at the Arctic increase.

Outline

Introduction

- Background: climate effects from black carbon
- Motivation: mitigate warming in the Arctic
- Black carbon emissions reconstruction for Russia
- To fill information gaps
- Numerical simulation and evaluation
- Hemispheric WRF/CMAQ modeling in the Arctic

Impact assessment

Transport and deposition of black carbon in the Arctic

Monthly BC dry deposition perturbations

BC dry deposition (RUS – HTAP)

ratio: (RUS – HTAP)/RUS

JUN

DEC

Monthly BC dry deposition perturbations

Conclusions

 Russian black carbon emissions are strongly underestimated, e.g. gas flaring.

By using the new Russian BC emission as model input, the model performance could be significantly improved against observations. Previous studies by revising the physical processes in the model could be misleading.

Gas flaring is a crucial emission source contributing to the high BC episodes in the Arctic although its source area is limited within a small region.

The role of Russian emission on the BC surface level and deposition in the Arctic has been significantly underestimated and even overlooked in some regions.

Acknowledgment

This work is supported by Interagency Acquisition Agreement S-OES-11_IAA-0027 from the **U.S. Department of State** to the **U.S. Department of Energy**. We sincerely thank our Russian counterparts Alexander Romanov, Irina Morozova, and Yulia Ignatieva and Vitaly Y. Prikhodko's coordination with **SRI - Atmosphere** to obtain part of the emission source data used in this study.

Data Repository

ABCI Arctic Black Carbon Initiative						@ LIN	(S HELP
		HOME	ABOUT ABCI ~	DATA ~	PUBLICATIONS	PRESENTATIO	ONS
Downloads http://abci.ornl.gov/index.shtml							Downloads
🕹 Download Datasets							
Dataset Description							Link
Visualization input data in the original format with one sheet per end-use sector and columns for each fuel.							XLSX
Visualization input data in a relational format with a row for each non-zero sector-fuel pair. Includes additional sheets for grouping fuels and Oblasts and some analysis tables that allow the user to estimate the effect of changes.						XLSX	

Reference: Huang, K., Fu, J. S., V. Y. Prikhodko, J. M. Storey, A. Romanov, E. L. Hodson, J. Cresko, I. Morozova, Y. Ignatieva, J. Cabaniss (2015), <u>Russian anthropogenic black carbon:</u> <u>Emission reconstruction and Arctic black carbon simulation</u>, *Journal of Geophysical Research-Atmospheres*, doi:10.1002/2015JD023358.